We investigated the long-lasting effects of early postnatal tactile stimulation (TS) and maternal separation (MS) on the emotional behaviors of adult female rats. A split-litter design was introduced to remove con...We investigated the long-lasting effects of early postnatal tactile stimulation (TS) and maternal separation (MS) on the emotional behaviors of adult female rats. A split-litter design was introduced to remove confusing factors such as maternal disturbance. Pups of the non-tactile stimulation (NTS) group did not receive any handling. Pups subjected to the TS treatment were handled and marked for approximately 30 s daily from postnatal days (PND) 2 - 9 or from PND 10 - 17. Pups subjected to the MS treatment were handled and marked in the same way as the TS pups and then individually placed in a cup with familiar nest bedding for 1 h daily. At the age of 3 months, female rats with different neonatal experiences were employed in the light/dark box test and the one-trial passive avoidance response. Both PND 2 - 9 TS and PND 10 - 17 TS groups exhibited more time spent in the illuminated chamber of the light/dark box, and longer step-through latencies in the passive avoidance response when compared to the NTS group, indicating that early life TS treatment reduced novelty-induced anxious emotion and facilitated the retention of emotional memory in adult female rats. No significant effects were found on any behavioral measures between the MS groups and the TS groups, suggesting that neonatal short-time MS treatment was not intensive enough to alter the emotional behaviors, at least in female rats. Infantile age was not an effective factor for these measures. This result supports the hypothesis that neonatal tactile stimulation and maternal separation lead to different effects on the neural development of postnatal pups.展开更多
Numerous studies have shown that many patients who suffer from type 2 diabetes mellitus exhibit cognitive dysfunction and neuronal synaptic impairments. Therefore, growing evidence suggests that type 2 diabetes mellit...Numerous studies have shown that many patients who suffer from type 2 diabetes mellitus exhibit cognitive dysfunction and neuronal synaptic impairments. Therefore, growing evidence suggests that type 2 diabetes mellitus has a close relationship with occurrence and progression of neurodegeneration and neural impairment in Alzheimer's disease. However, the relationship between metabolic disorders caused by type 2 diabetes mellitus and neurodegeneration and neural impairments in Alzheimer's disease is still not fully determined. Thus, in this study, we replicated a type 2 diabetic animal model by subcutaneous injection of newborn Sprague-Dawley rats with monosodium glutamate during the neonatal period. At 3 months old, the Barnes maze assay was performed to evaluate spatial memory function. Microelectrodes were used to measure electrophysiological function in the hippocampal CA1 region. Western blot assay was used to determine expression levels of glutamate ionotropic receptor NMDA type subunit 2 A(GluN2A) and GluN2B in the hippocampus. Enzyme-linked immunosorbent assay was used to determine levels of interleukin-1β, tumor necrosis factor α, and interleukin-6 in the hippocampus and cerebral cortex, as well as hippocampal amyloid beta(Aβ)1-40 and Aβ_(1-42) levels. Our results showed that in the rat model of type 2 diabetes mellitus caused by monosodium glutamate exposure during the neonatal period, latency was prolonged and the number of errors increased in the Barnes maze. Further, latency was increased and time in the escape platform quadrant shortened. Number of times crossing the platform was also reduced in the Morris water maze. After high frequency stimulation of the hippocampus, synaptic transmission was inhibited, expression of GluN2A and GluN2B were decreased in the hippocampus, expression of interleukin 1β, interleukin 6, and tumor necrosis factor α was increased in the hippocampus and cortex, and levels of Aβ_(1-40) and Aβ_(1-42) were increased in the hippocampus. These findings confirm that type 2 diabetes mellitus induced by neonatal monosodium glutamate exposure results in Alzheimer-like neuropathological changes and further causes cognitive deficits and neurodegeneration in young adulthood.展开更多
Newborn animals require tightly regulated local and systemic immune environments to govern the development and maturation of multiple organs/tissues even though the immune system itself is far from mature during the n...Newborn animals require tightly regulated local and systemic immune environments to govern the development and maturation of multiple organs/tissues even though the immune system itself is far from mature during the neonatal period.Regulatory T cells(Tregs)are essential for maintaining immune tolerance/homeostasis and modulating inflammatory responses.The features of Tregs in the neonatal liver under steady-state conditions are not well understood.The present study aimed to investigate the phenotype,functions,and significance of neonatal Tregs in the liver.We found a wave of thymus-derived Treg influx into the liver during 1–2 weeks of age.Depletion of these Tregs between days 7 and 11 after birth rapidly resulted in Th1-type liver inflammation and metabolic disorder.More Tregs in the neonatal liver than in the spleen underwent MHC II-dependent activation and proliferation,and the liver Tregs acquired stronger suppressive functions.The transcriptomic profile of these neonatal liver Tregs showed elevated expression of PPARγand T-bet and features of Tregs that utilize lipid metabolic machinery and are capable of regulating Th1 responses.The accumulation of Tregs with unique features in the neonatal liver is critical to ensure self-tolerance and liver maturation.展开更多
文摘We investigated the long-lasting effects of early postnatal tactile stimulation (TS) and maternal separation (MS) on the emotional behaviors of adult female rats. A split-litter design was introduced to remove confusing factors such as maternal disturbance. Pups of the non-tactile stimulation (NTS) group did not receive any handling. Pups subjected to the TS treatment were handled and marked for approximately 30 s daily from postnatal days (PND) 2 - 9 or from PND 10 - 17. Pups subjected to the MS treatment were handled and marked in the same way as the TS pups and then individually placed in a cup with familiar nest bedding for 1 h daily. At the age of 3 months, female rats with different neonatal experiences were employed in the light/dark box test and the one-trial passive avoidance response. Both PND 2 - 9 TS and PND 10 - 17 TS groups exhibited more time spent in the illuminated chamber of the light/dark box, and longer step-through latencies in the passive avoidance response when compared to the NTS group, indicating that early life TS treatment reduced novelty-induced anxious emotion and facilitated the retention of emotional memory in adult female rats. No significant effects were found on any behavioral measures between the MS groups and the TS groups, suggesting that neonatal short-time MS treatment was not intensive enough to alter the emotional behaviors, at least in female rats. Infantile age was not an effective factor for these measures. This result supports the hypothesis that neonatal tactile stimulation and maternal separation lead to different effects on the neural development of postnatal pups.
基金principally supported by the Initial Funding of PhD Research from Henan Medical College of China,No.1001/0106in parts by the Science and Technology Project of Henan Province of China,No.172102310105
文摘Numerous studies have shown that many patients who suffer from type 2 diabetes mellitus exhibit cognitive dysfunction and neuronal synaptic impairments. Therefore, growing evidence suggests that type 2 diabetes mellitus has a close relationship with occurrence and progression of neurodegeneration and neural impairment in Alzheimer's disease. However, the relationship between metabolic disorders caused by type 2 diabetes mellitus and neurodegeneration and neural impairments in Alzheimer's disease is still not fully determined. Thus, in this study, we replicated a type 2 diabetic animal model by subcutaneous injection of newborn Sprague-Dawley rats with monosodium glutamate during the neonatal period. At 3 months old, the Barnes maze assay was performed to evaluate spatial memory function. Microelectrodes were used to measure electrophysiological function in the hippocampal CA1 region. Western blot assay was used to determine expression levels of glutamate ionotropic receptor NMDA type subunit 2 A(GluN2A) and GluN2B in the hippocampus. Enzyme-linked immunosorbent assay was used to determine levels of interleukin-1β, tumor necrosis factor α, and interleukin-6 in the hippocampus and cerebral cortex, as well as hippocampal amyloid beta(Aβ)1-40 and Aβ_(1-42) levels. Our results showed that in the rat model of type 2 diabetes mellitus caused by monosodium glutamate exposure during the neonatal period, latency was prolonged and the number of errors increased in the Barnes maze. Further, latency was increased and time in the escape platform quadrant shortened. Number of times crossing the platform was also reduced in the Morris water maze. After high frequency stimulation of the hippocampus, synaptic transmission was inhibited, expression of GluN2A and GluN2B were decreased in the hippocampus, expression of interleukin 1β, interleukin 6, and tumor necrosis factor α was increased in the hippocampus and cortex, and levels of Aβ_(1-40) and Aβ_(1-42) were increased in the hippocampus. These findings confirm that type 2 diabetes mellitus induced by neonatal monosodium glutamate exposure results in Alzheimer-like neuropathological changes and further causes cognitive deficits and neurodegeneration in young adulthood.
基金by grants from the National Key Research and Development Program of China(2017YFA0104500)the National Natural Science Foundation of China(81471525,31671244,and 31872734,Q.G.+2 种基金81601975,K.Z.)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(81621001)the Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences(2018PT31039).
文摘Newborn animals require tightly regulated local and systemic immune environments to govern the development and maturation of multiple organs/tissues even though the immune system itself is far from mature during the neonatal period.Regulatory T cells(Tregs)are essential for maintaining immune tolerance/homeostasis and modulating inflammatory responses.The features of Tregs in the neonatal liver under steady-state conditions are not well understood.The present study aimed to investigate the phenotype,functions,and significance of neonatal Tregs in the liver.We found a wave of thymus-derived Treg influx into the liver during 1–2 weeks of age.Depletion of these Tregs between days 7 and 11 after birth rapidly resulted in Th1-type liver inflammation and metabolic disorder.More Tregs in the neonatal liver than in the spleen underwent MHC II-dependent activation and proliferation,and the liver Tregs acquired stronger suppressive functions.The transcriptomic profile of these neonatal liver Tregs showed elevated expression of PPARγand T-bet and features of Tregs that utilize lipid metabolic machinery and are capable of regulating Th1 responses.The accumulation of Tregs with unique features in the neonatal liver is critical to ensure self-tolerance and liver maturation.