Based on the total electron content (TEC) derived from Global Positioning System (GPS) observations of the Crustal Movement Observation Network of China (CMONOC) and the Global Ionosphere Map (GIM) from the Ce...Based on the total electron content (TEC) derived from Global Positioning System (GPS) observations of the Crustal Movement Observation Network of China (CMONOC) and the Global Ionosphere Map (GIM) from the Center for Orbit Determination in Europe (CODE), we detected and analyzed the ionospheric variations during the 2015 M7.8 Nepal earthquake (including the pre-earthquake ionospheric anomalies and coseismic ionospheric disturbances (CIDs) following the main shock). The analysis of vertical total electron content (VTEC) time series shows that the large-scale ionospheric anomalies appeared near the epicenter two days prior to the earthquake. Moreover, the pre-earthcluake ionospheric anomalies were also observed in the geomagnetically conjugated region. In view of solar-terrestrial environment, the pre-earthquake ionospheric anomalies could be associated with the Nepal earthquake. In addition, we also detected the CIDs through the high-frequency GPS observation stations. The CIDs had obvious oscillated waveforms with the peak-to-peak disturbance amplitudes of about I TECu and 0.4 TECu, which propagated approximately with the horizontal velocities of 877 ±75 m/s and 319 ± 30 m/s, respectively. The former is triggered directly by the acoustic waves which originated from the energy release of the earthquake near the epicenter, while the latter could be stimulated by the acoustic-gravity waves from the partial transformation of the acoustic waves.展开更多
The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) b...The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) by using relative kinematic positioning and derived dynamic ground motions caused by this large earthquake. The dynamic displacements time series clearly indicated the displacement amplitude of each station was related to the rupture directivity. The stations which located in the di- rection of rupture propagation had larger displacement amplitudes than others. Also dynamic ground displacement exceeding 5 cm was detected by the GPS station that was 2000 km away from the epicenter. Permanent coseismic displacements were resolved from the near-field high-rate GPS stations with wavelet decomposition-reconstruction method and P-wave arrivals were also detected with S transform method. The results of this study can be used for earthquake rupture process and Earthquake Early Warning studies.展开更多
基金supported by National Natural Science Foundation of China (41174030,41304047)
文摘Based on the total electron content (TEC) derived from Global Positioning System (GPS) observations of the Crustal Movement Observation Network of China (CMONOC) and the Global Ionosphere Map (GIM) from the Center for Orbit Determination in Europe (CODE), we detected and analyzed the ionospheric variations during the 2015 M7.8 Nepal earthquake (including the pre-earthquake ionospheric anomalies and coseismic ionospheric disturbances (CIDs) following the main shock). The analysis of vertical total electron content (VTEC) time series shows that the large-scale ionospheric anomalies appeared near the epicenter two days prior to the earthquake. Moreover, the pre-earthcluake ionospheric anomalies were also observed in the geomagnetically conjugated region. In view of solar-terrestrial environment, the pre-earthquake ionospheric anomalies could be associated with the Nepal earthquake. In addition, we also detected the CIDs through the high-frequency GPS observation stations. The CIDs had obvious oscillated waveforms with the peak-to-peak disturbance amplitudes of about I TECu and 0.4 TECu, which propagated approximately with the horizontal velocities of 877 ±75 m/s and 319 ± 30 m/s, respectively. The former is triggered directly by the acoustic waves which originated from the energy release of the earthquake near the epicenter, while the latter could be stimulated by the acoustic-gravity waves from the partial transformation of the acoustic waves.
基金supported by Director Foundation of Institute of Seismology,China Earthquake Administration(IS201426142)National Natural Science Foundation of China(41541029,41574017, 41274027)+1 种基金Natural Science Foundation of HuBei Province (2015CFB642)provided by Crustal Movement Observation Network of China(CMONOC) and UNAVCO
文摘The April 25, 2015 Mw7.8 Nepal earthquake was successfully recorded by Crustal Movement Observation Network of China (CMONOC) and Nepal Geodetic Array (NGA). We processed the high-rate GPS data (1 Hz and 5 Hz) by using relative kinematic positioning and derived dynamic ground motions caused by this large earthquake. The dynamic displacements time series clearly indicated the displacement amplitude of each station was related to the rupture directivity. The stations which located in the di- rection of rupture propagation had larger displacement amplitudes than others. Also dynamic ground displacement exceeding 5 cm was detected by the GPS station that was 2000 km away from the epicenter. Permanent coseismic displacements were resolved from the near-field high-rate GPS stations with wavelet decomposition-reconstruction method and P-wave arrivals were also detected with S transform method. The results of this study can be used for earthquake rupture process and Earthquake Early Warning studies.