期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Crosstalk among mitophagy,pyroptosis,ferroptosis,and necroptosis in central nervous system injuries 被引量:1
1
作者 Li Zhang Zhigang Hu +1 位作者 Zhenxing Li Yixing Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1660-1670,共11页
Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and... Central nervous system injuries have a high rate of resulting in disability and mortality;however,at present,effective treatments are lacking.Programmed cell death,which is a genetically determined fo rm of active and ordered cell death with many types,has recently attra cted increasing attention due to its functions in determining the fate of cell survival.A growing number of studies have suggested that programmed cell death is involved in central nervous system injuries and plays an important role in the progression of brain damage.In this review,we provide an ove rview of the role of programmed cell death in central nervous system injuries,including the pathways involved in mitophagy,pyroptosis,ferroptosis,and necroptosis,and the underlying mechanisms by which mitophagy regulates pyroptosis,ferroptosis,and necro ptosis.We also discuss the new direction of therapeutic strategies to rgeting mitophagy for the treatment of central nervous system injuries,with the aim to determine the connection between programmed cell death and central nervous system injuries and to identify new therapies to modulate programmed cell death following central nervous system injury.In conclusion,based on these properties and effects,interventions targeting programmed cell death could be developed as potential therapeutic agents for central nervous system injury patients. 展开更多
关键词 central nervous system injuries death pyroptosis ferroptosis inflammation MITOPHAGY NECROPTOSIS programmed cell
下载PDF
Click chemistry extracellular vesicle/peptide/chemokine nanocarriers for treating central nervous system injuries 被引量:5
2
作者 Huitong Ruan Yongfang Li +12 位作者 Cheng Wang Yixu Jiang Yulong Han Yiwei Li Dandan Zheng Jing Ye Gang Chen Guo-yuan Yang Lianfu Deng Ming Guo Xingcai Zhang Yaohui Tang Wenguo Cui 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第5期2202-2218,共17页
Central nervous system(CNS)injuries,including stroke,traumatic brain injury,and spinal cord injury,are essential causes of death and long-term disability and are difficult to cure,mainly due to the limited neuron rege... Central nervous system(CNS)injuries,including stroke,traumatic brain injury,and spinal cord injury,are essential causes of death and long-term disability and are difficult to cure,mainly due to the limited neuron regeneration and the glial scar formation.Herein,we apply extracellular vesicles(EVs)secreted by M2 microglia to improve the differentiation of neural stem cells(NSCs)at the injured site,and simultaneously modify them with the injured vascular targeting peptide(DA7R)and the stem cell recruiting factor(SDF-1)on their surface via copper-free click chemistry to recruit NSCs,inducing their neuronal differentiation,and serving as the nanocarriers at the injured site(Dual-EV).Results prove that the Dual-EV could target human umbilical vascular endothelial cells(HUVECs),recruit NSCs,and promote the neuronal differentiation of NSCs in vitro.Furthermore,10 miRNAs are found to be upregulated in Dual-M2-EVs compared to Dual-M0-EVs via bioinformatic analysis,and further NSC differentiation experiment by flow cytometry reveals that among these miRNAs,miR30b-3p,miR-222-3p,miR-129-5p,and miR-155-5p may exert effect of inducing NSC to differentiate into neurons.In vivo experiments show that Dual-EV nanocarriers achieve improved accumulation in the ischemic area of stroke model mice,potentiate NSCs recruitment,and increase neurogenesis.This work provides new insights for the treatment of neuronal regeneration after CNS injuries as well as endogenous stem cells,and the click chemistry EV/peptide/chemokine and related nanocarriers for improving human health. 展开更多
关键词 Central nervous system injuries Stroke Neural stem cell Neurogenesis Click chemistry Extracellular vesicles Microglia Targeted delivery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部