期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
一种基于稀疏优化和Nesterov动量策略的模型剪枝算法
1
作者
周强
陈军
+1 位作者
鲍蕾
陶卿
《数据采集与处理》
CSCD
北大核心
2024年第3期659-667,共9页
随着深度学习快速发展,模型的参数量和计算复杂度爆炸式增长,在移动终端上部署面临挑战,模型剪枝成为深度学习模型落地应用的关键。目前,基于正则化的剪枝方法通常采用L2正则化并结合基于数量级的重要性标准,是一种经验性的方法,缺乏理...
随着深度学习快速发展,模型的参数量和计算复杂度爆炸式增长,在移动终端上部署面临挑战,模型剪枝成为深度学习模型落地应用的关键。目前,基于正则化的剪枝方法通常采用L2正则化并结合基于数量级的重要性标准,是一种经验性的方法,缺乏理论依据,精度难以保证。受Proximal梯度方法求解稀疏优化问题的启发,本文提出一种能够在深度神经网络上直接产生稀疏解的Prox⁃NAG优化方法,并设计了与之配套的迭代剪枝算法。该方法基于L1正则化,利用Nesterov动量求解优化问题,克服了原有正则化剪枝方法对L2正则化和数量级标准的依赖,是稀疏优化从传统机器学习向深度学习的自然推广。在CIFAR10数据集上对ResNet系列模型进行剪枝实验,实验结果证明Prox⁃NAG剪枝算法较原有剪枝算法性能有所提升。
展开更多
关键词
稀疏
优化
剪枝算法
Proximal梯度方法
nesterov
加速梯度(
nesterov
accelerated
gradient
NAG)
下载PDF
职称材料
题名
一种基于稀疏优化和Nesterov动量策略的模型剪枝算法
1
作者
周强
陈军
鲍蕾
陶卿
机构
陆军炮兵防空兵学院信息工程系
出处
《数据采集与处理》
CSCD
北大核心
2024年第3期659-667,共9页
基金
国家自然科学基金(62076252)。
文摘
随着深度学习快速发展,模型的参数量和计算复杂度爆炸式增长,在移动终端上部署面临挑战,模型剪枝成为深度学习模型落地应用的关键。目前,基于正则化的剪枝方法通常采用L2正则化并结合基于数量级的重要性标准,是一种经验性的方法,缺乏理论依据,精度难以保证。受Proximal梯度方法求解稀疏优化问题的启发,本文提出一种能够在深度神经网络上直接产生稀疏解的Prox⁃NAG优化方法,并设计了与之配套的迭代剪枝算法。该方法基于L1正则化,利用Nesterov动量求解优化问题,克服了原有正则化剪枝方法对L2正则化和数量级标准的依赖,是稀疏优化从传统机器学习向深度学习的自然推广。在CIFAR10数据集上对ResNet系列模型进行剪枝实验,实验结果证明Prox⁃NAG剪枝算法较原有剪枝算法性能有所提升。
关键词
稀疏
优化
剪枝算法
Proximal梯度方法
nesterov
加速梯度(
nesterov
accelerated
gradient
NAG)
Keywords
sparse
optimization
pruning algorithm
Proximal
gradient
method
nesterov accelerated gradient
(NAG)
分类号
TP311 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
一种基于稀疏优化和Nesterov动量策略的模型剪枝算法
周强
陈军
鲍蕾
陶卿
《数据采集与处理》
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部