Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf ph...Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.展开更多
The investigation of the mechanisms of plant adaptation to stressor action is one of the leading directions of current biological studies. To understand the mechanism of salt tolerance of seabuckthom (Hippophae rhamn...The investigation of the mechanisms of plant adaptation to stressor action is one of the leading directions of current biological studies. To understand the mechanism of salt tolerance of seabuckthom (Hippophae rhamnoides L.) and identify its ability to cope with the salinity effect in the saline and extremely cold region of Qinghai, China, a test was conducted with two-year-old seedlings subjected to 0, 200, 400 and 600 mmol·L^-1 NaClsolutions for 30 d. The results show that with an increase in salinity, the biomass of H. rhamnoides seedlings clearly decreased. Leaf water potential (ψw) and relative water content (RWC) were significantly reduced under salinity, with severe water shortages appearing in leaves. At the same time, the total chlorophyll content declined markedly. When salinity increased and stress time prolonged, the net CO2 assimilation rate (A) significantly declined. Intercellular CO2 concentration (Ci) declined at first and was then followed by an increase over the stress time. We conclude that H. rhamnoides grown in the extremely cold and saline region of Qinghai has a certain resistance to salt, which can be planted at appropriate salinity levels.展开更多
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus ko...The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L?1 and 700 μL·L?1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L?1 and 700 μL·L?1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L?1 CO2 but upward to 500 μL·L?1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L?1 CO2 were higher than that at 700 μL·L?1 CO2. The concentration 500 μL·L?1 CO2 enhanced the growth of aboveground part whereas 700 μL·L?1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L?1 CO2 and 700 μL·L?1 CO2.展开更多
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金Natural Science Foundation of China (Grant No. 39900084)
文摘Basic structure and algorithm of leaf mechanism photosynthesis model were described in first part of this study based on former researcher results. Then, considering some environmental factors influencing on leaf photosynthesis, three numerical sensitivity experiments were carried out. We simulated the sing le leaf net CO2 assimilation, which acts as a function of different light, carbo n dioxide and temperature conditions. The relationships between leaf net photosy nthetic rate of C3 and C4 plant with CO2 concentration intercellular, leaf tempe rature, and photosynthetic active radiation (PAR) were presented, respectively. The results show the numerical experiment may indicate the main characteristic o f plant photosynthesis in C3 and C4 plant, and further can be used to integrate with the regional climate model and act as land surface process scheme, and bett er understand the interaction between vegetation and atmosphere.
基金supported by the Doctoral Program Foundation of Institutions of Higher Education of China (20070022028)the 11th Five Scientific & Technological Sustaining Research Program of China (2006BAD03A1203)
文摘The investigation of the mechanisms of plant adaptation to stressor action is one of the leading directions of current biological studies. To understand the mechanism of salt tolerance of seabuckthom (Hippophae rhamnoides L.) and identify its ability to cope with the salinity effect in the saline and extremely cold region of Qinghai, China, a test was conducted with two-year-old seedlings subjected to 0, 200, 400 and 600 mmol·L^-1 NaClsolutions for 30 d. The results show that with an increase in salinity, the biomass of H. rhamnoides seedlings clearly decreased. Leaf water potential (ψw) and relative water content (RWC) were significantly reduced under salinity, with severe water shortages appearing in leaves. At the same time, the total chlorophyll content declined markedly. When salinity increased and stress time prolonged, the net CO2 assimilation rate (A) significantly declined. Intercellular CO2 concentration (Ci) declined at first and was then followed by an increase over the stress time. We conclude that H. rhamnoides grown in the extremely cold and saline region of Qinghai has a certain resistance to salt, which can be planted at appropriate salinity levels.
文摘The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L?1 and 700 μL·L?1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L?1 and 700 μL·L?1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L?1 CO2 but upward to 500 μL·L?1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L?1 CO2 were higher than that at 700 μL·L?1 CO2. The concentration 500 μL·L?1 CO2 enhanced the growth of aboveground part whereas 700 μL·L?1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L?1 CO2 and 700 μL·L?1 CO2.