期刊文献+
共找到2,615篇文章
< 1 2 131 >
每页显示 20 50 100
Spatiotemporal changes of gross primary productivity and its response to drought in the Mongolian Plateau under climate change 被引量:1
1
作者 ZHAO Xuqin LUO Min +3 位作者 MENG Fanhao SA Chula BAO Shanhu BAO Yuhai 《Journal of Arid Land》 SCIE CSCD 2024年第1期46-70,共25页
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation... Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas. 展开更多
关键词 gross primary productivity(GPP) climate change warming aridification areas drought sensitivity cumulative effect duration(CED) Mongolian Plateau
下载PDF
Seasonal influence of freshwater discharge on spatio-temporal variations in primary productivity, sea surface temperature, and euphotic zone depth in the northern Bay of Bengal
2
作者 Hafez Ahmad Felix Jose +2 位作者 Md.Simul Bhuyan Md.Nazrul Islam Padmanava Dash 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第6期1-14,共14页
Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surfa... Ocean productivity is the foundation of marine food web,which continuously removes atmospheric carbon dioxide and supports life at sea and on land.Spatio-temporal variability of net primary productivity(NPP),sea surface temperature(SST),sea surface salinity(SSS),mixed layer depth(MLD),and euphotic zone depth(EZD) in the northern B ay of Bengal(BoB) during three monsoon seasons were examined in this study based on remote sensing data for the period 2005 to 2020.To compare the NPP distribution between the coastal zones and open BoB,the study area was divided into five zones(Z1-Z5).Results suggest that most productive zones Z2 and Zl are located at the head bay area and are directly influenced by freshwater discharge together with riverine sediment and nutrient loads.Across Z1-Z5,the NPP ranges from 5 315.38 mg/(m^(2)·d) to 346.7 mg/(m^(2)·d)(carbon,since then the same).The highest monthly average NPP of 5 315.38 mg/(m^(2)·d) in February and 5 039.36 mg/(m^(2)·d) in June were observed from Z2,while the lowest monthly average of 346.72 mg/(m^(2)·d) was observed in March from Z4,which is an oceanic zone.EZD values vary from 6-154 m for the study area,and it has an inverse correlation with NPP concentration.EZD is deeper during the summer season and shallower during the wintertime,with a corresponding increase in productivity.Throughout the year,monthly SST shows slight fluctuation for the entire study area,and statistical analysis shows a significant correlation among NPP,and EZD,overall positive between NPP and MLD,whereas no significant correlation among SSS,and SST for the northern BoB.Long-term trends in SST and productivity were significantly po sitive in head bay zones but negatively productive in the open ocean.The findings in this study on the distribution of NPP,SST,SSS,MLD,and EZD and their seasonal variability in five different zones of BoB can be used to further improve the management of marine resources and overall environmental condition in response to climate changes in BoB as they are of utmost relevance to the fisheries for the three bordering countries. 展开更多
关键词 chlorophyll a sea surface temperature euphotic zone depth primary productivity Ganges-Brahmaputra ocean color Bay of Bengal MONSOON
下载PDF
A process model for simulating net primary productivity (NPP) based on the interaction of water-heat process and nitrogen: a case study in Lantsang valley 被引量:2
3
作者 ZHANG Hai-long LIU Gao-huan FENG Xian-feng 《Journal of Forestry Research》 SCIE CAS CSCD 2011年第1期93-97,共5页
Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle ... Terrestrial carbon cycle and the global atmospheric CO2 budget are important foci in global climate change research. Simulating net primary productivity (NPP) of terrestrial ecosystems is important for carbon cycle research. In this study, a plant-atmosphere-soil continuum nitrogen (N) cycling model was developed and incorporated into the Boreal Ecosystem Productivity Simulator (BEPS) model. With the established database (leaf area index, land cover, daily meteorology data, vegetation and soil) at a 1 km resolution, daily maps of NPP for Lantsang valley in 2007 were produced, and the spatial-temporal patterns of NPP and mechanisms of its responses to soil N level were further explored. The total NPP and mean NPP of Lantsang valley in 2007 were 66.5 Tg C and 416 g?m-2?a-1 C, respectively. In addition, statistical analysis of NPP of different land cover types was conducted and investigated. Compared with BEPS model (without considering nitrogen effect), it was inferred that the plant carbon fixing for the upstream of Lantsang valley was also limited by soil available nitrogen besides temperature and precipitation. However, nitrogen has no evident limitation to NPP accumulation of broadleaf forest, which mainly distributed in the downstream of Lantsang valley. 展开更多
关键词 net primary productivity nitrogen cycle Lantsang valley boreal ecosystem productivity simulator
下载PDF
Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change 被引量:9
4
作者 朱文泉 潘耀忠 +1 位作者 刘鑫 王爱玲 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第2期93-98,共6页
An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal d... An improved Carnegie Ames Stanford Approach model (CASA model) was used to estimate the net primary productivity (NPP) of the Northeast China Transect (NECT) every month from 1982 to 2000. The spatial-temporal distribution of NPP along NECT and its response to climatic change were also analyzed. Results showed that the change tendency of NPP spatial distribution in NECT is quite similar to that of precipitation and their spatial correlation coefficient is up to 0.84 (P 〈 0.01). The inter-annual variation of NPP in NECT is mainly affected by the change of the aestival NPP every year, which accounts for 67.6% of the inter-annual increase in NPP and their spatial correlation coefficient is 0.95 (P 〈 0.01). The NPP in NECT is mainly cumulated between May and September, which accounts for 89.8% of the annual NPP. The NPP in summer (June to August) accounts for 65.9% of the annual NPP and is the lowest in winter. Recent climate changes have enhanced plant growth in NECT. The mean NPP increased 14.3% from 1980s to 1990s. The inter-annual linear trend of NPP is 4.6 gC·m^-2·a^-1, and the relative trend is 1.17%, which owns mainly to the increasing temperature. 展开更多
关键词 China Transect Remote sensing net primary productivity npp Climatic change Spatio-temporal distribution
下载PDF
Estimation of Net Primary Productivity of Terrestrial Vegetation in China by Remote Sensing 被引量:31
5
作者 陈利军 刘高焕 冯险峰 《Acta Botanica Sinica》 CSCD 2001年第11期1191-1198,共8页
Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and ... Among the many approaches for studying the net primary productivity (NPP), a new method by using remote sensing was introduced in this paper. With spectral information source (the visible band, near infrared band and thermal infrared band) of NOAA-AVHRR, we can get the relative index and parameters, which can be used for estimating NPP of terrestrial vegetation. By means of remote sensing, the estimation of biomass and NPP is mainly based on the models of light energy utilization. In other words, the biomass and NPP can be calculated from the relation among NPP, absorbed photosynthetical active radiation (APAR) and the rate (epsilon) of transformation of APAR to organic matter, thus: NPP = ( FPAR x PAR) x [epsilon * x sigma (T) x sigma (E) x sigma (S) x (1 - Y-m) x (1 - Y-g)]. Based upon remote sensing ( RS) and geographic information system (GIS), the NPP of terrestrial vegetation in China in every ten days was calculated, and the annual NPP was integrated. The result showed that the total NPP of terrestrial vegetation in China was 6.13 x 10(9) t C . a(-1) in 1990 and the maximum NPP was 1 812.9 g C/m(2). According to this result, the spatio-temporal distribution of NPP was analyzed. Comparing to the statistical models, the RS model, using area object other than point one, can better reflect the distribution of NPP, and match the geographic distribution of vegetation in China. 展开更多
关键词 remote sensing net primary productivity absorbed photosynthetical active radiation light energy utilization BIOMASS
下载PDF
Storage of biomass and net primary productivity in desert shrubland of Artemisia ordosica on Ordos Plateau of Inner Mongolia, China 被引量:4
6
作者 金钊 齐玉春 董云社 《Journal of Forestry Research》 SCIE CAS CSCD 2007年第4期298-300,共3页
Biomass and net primary productivity (NPP) are two important parameters in determining ecosystem carbon pool and carbon sequestration. The biomass storage and NPP in desert shrubland of Artemisia ordosica on Ordos P... Biomass and net primary productivity (NPP) are two important parameters in determining ecosystem carbon pool and carbon sequestration. The biomass storage and NPP in desert shrubland of Artemisia ordosica on Ordos Plateau were investigated with method of harvesting standard size shrub in the growing season (June-October) of 2006. Results indicated that above- and belowground biomass of the same size shrubs showed no significant variation in the growing season (p〉0.1), but annual biomass varied significantly (p〈 0.01). In the A. ordosica community, shrub biomass storage was 699.76-1246.40 g.m^-2 and annual aboveground NPP was 224.09 g-m^-2·a^-1. Moreover, shrub biomass and NPP were closely related with shrub dimensions (cover and height) and could be well predicted by shrub volume using power regression. 展开更多
关键词 Shrub biomass net primary productivity Artemisia ordosica community Ordos Plateau Inner Mongolia
下载PDF
1982—2020年乌兰县植被NPP时空动态特征及驱动力量化分析
7
作者 刘辉 宋孝玉 +3 位作者 王荣荣 祝德名 何希 刘斯琪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第3期328-334,共7页
气候变化和人类活动对植被NPP(net primary productivity,净初级生产力)的驱动作用是全球气候变化背景下的研究热点,并且在不同的时空尺度上尚不能达成共识。中国西北寒旱牧区植被生态系统脆弱,对气候变化和人类活动的响应十分敏感,该... 气候变化和人类活动对植被NPP(net primary productivity,净初级生产力)的驱动作用是全球气候变化背景下的研究热点,并且在不同的时空尺度上尚不能达成共识。中国西北寒旱牧区植被生态系统脆弱,对气候变化和人类活动的响应十分敏感,该研究以青海省乌兰县作为代表性研究区,采用GIMMS-NDVI and MOD-NDVI数据融合构建了长时序归一化植被指数(normalized difference vegetation index,NDVI)数据集,并结合CASA(carnegie-ames-stanford approach)模型获取了研究区1982—2020年植被生长季NPP,利用Sen+MK趋势分析方法探究了研究区植被生长季NPP的时空演变特征,同时采用构建的ADE+Sen量化归因方法对多种气候要素和人类活动的驱动作用进行了定量分析。结果表明,研究区植被生长季NPP多年均值为(205.9±11.5)g/(m^(2)·a)(以C计),年际变化无显著趋势,不同植被类型的生长季NPP年际波动过程与全域生长季NPP基本一致。在空间上,植被生长季NPP自西向东逐渐增加,年际变化趋势具有明显的空间异质性,且整体以退化为主,平均变化率为-0.151 g/(m^(2)·a2),其中表现出严重退化和轻度退化的面积占比分别达到了31.7%和29.5%。气候变化主导的植被面积占比达85.2%,其贡献值的绝对平均值为1.025 g/(m^(2)·a2),约是人类活动贡献值绝对平均值的2倍,太阳辐射、降水量、平均气温和平均风速均是影响植被生长季NPP动态的主要气候因素。该研究表明研究区植被整体表现为退化状态,气候变化是导致该现象的主导驱动因素。研究结果可为中国西北寒旱牧区植被生态系统的可持续利用和保护提供参考。 展开更多
关键词 净初级生产力 气候变化 人类活动 定量分析 乌兰县
下载PDF
基于改进CASA模型的陕西省植被NPP遥感估算 被引量:3
8
作者 赵雪瑞 韩玲 +1 位作者 刘明 宋敏琪 《水土保持研究》 CSCD 北大核心 2024年第3期247-256,共10页
[目的]探究陕西省陆地生态系统植被群落生产状况,分析陕西省植被NPP时空格局变化及影响因素,为准确评估陕西省陆地生态系统碳源/汇,实现区域生态可持续发展,达成碳中和目标提供参考依据。[方法]基于温度—植被干旱指数(Temperature Vege... [目的]探究陕西省陆地生态系统植被群落生产状况,分析陕西省植被NPP时空格局变化及影响因素,为准确评估陕西省陆地生态系统碳源/汇,实现区域生态可持续发展,达成碳中和目标提供参考依据。[方法]基于温度—植被干旱指数(Temperature Vegetation Dryness Index, TVDI)对CASA(Carnegie-Ames-Stanford Approach)模型水分胁迫因子进行改进,从而估算陕西省2010—2020年植被NPP,并利用热点分析法、趋势分析法以及地理探测器对陕西省植被NPP进行空间分布格局、年际变化趋势和驱动因子研究。[结果](1)陕西省NPP空间分布呈现南高北低、冷热点区域差异明显的特征;(2)陕西省2010—2020年NPP平均值介于331.02~416.34 gC/(m^(2)·a),NPP均值在100~600 gC/(m^(2)·a)占比最大,最低值和最高值区间占比不足20%;(3)全省2010—2020年83.3%的面积植被NPP值无显著变化,4.2%的面积呈增加状态,12.5%的面积NPP值呈下降趋势;(4)降水是陕西省植被NPP变化的单因子主导驱动力,太阳辐射量及土地利用类型交互作用下对NPP变化解释力更强。[结论]基于TVDI改进的CASA模型能够有效量化区域植被NPP,且陕西省植被NPP南北分布差异明显,降水、土地利用类型及太阳辐射量是其主要影响因子。 展开更多
关键词 净初级生产力 CASA模型 TVDI 陕西省
下载PDF
Variation of net primary productivity and its drivers in China’s forests during 2000-2018 被引量:12
9
作者 Yuhe Ji Guangsheng Zhou +3 位作者 Tianxiang Luo Yakir Dan Li Zhou Xiaomin Lv 《Forest Ecosystems》 SCIE CSCD 2020年第2期190-200,共11页
Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about ... Background:Net primary productivity(NPP)in forests plays an important role in the global carbon cycle.However,it is not well known about the increase rate of China’s forest NPP,and there are different opinions about the key factors controlling the variability of forest NPP.Methods:This paper established a statistics-based multiple regression model to estimate forest NPP,using the observed NPP,meteorological and remote sensing data in five major forest ecosystems.The fluctuation values of NPP and environment variables were extracted to identify the key variables influencing the variation of forest NPP by correlation analysis.Results:The long-term trends and annual fluctuations of forest NPP between 2000 and 2018 were examined.The results showed a significant increase in forest NPP for all five forest ecosystems,with an average rise of 5.2 gC·m-2·year-1 over China.Over 90%of the forest area had an increasing NPP range of 0-161 gC·m-2·year-1.Forest NPP had an interannual fluctuation of 50-269 gC.m-2·year-1 for the five major forest ecosystems.The evergreen broadleaf forest had the largest fluctuation.The variability in forest NPP was caused mainly by variations in precipitation,then by temperature fluctuations.Conclusions:All five forest ecosystems in China exhibited a significant increasing NPP along with annual fluctuations evidently during 2000-2018.The variations in China’s forest NPP were controlled mainly by changes in precipitation. 展开更多
关键词 net primary production(npp) Forest ecosystem annual precipitation npp model FLUCTUATION VARIABILITY
下载PDF
三峡库区消落带植被NPP估算——基于机器学习优化CASA模型 被引量:2
10
作者 靳专 胥焘 +5 位作者 黄应平 肖敏 张家璇 周爽爽 席颖 熊彪 《生态学报》 CAS CSCD 北大核心 2024年第6期2464-2478,共15页
三峡库区蓄水后,其生态效应受到广泛关注。消落带植被固碳量作为衡量库区生态系统健康状态的重要指标,对库区碳循环与生态净化具有重要意义。针对消落带不同高程植被接受光照的时间有所差异,且受河流水位变化影响,传统的CASA模型在计算... 三峡库区蓄水后,其生态效应受到广泛关注。消落带植被固碳量作为衡量库区生态系统健康状态的重要指标,对库区碳循环与生态净化具有重要意义。针对消落带不同高程植被接受光照的时间有所差异,且受河流水位变化影响,传统的CASA模型在计算消落带植被固碳量时,存在对植物的光能利用率计算不够精确等问题。以三峡库区香溪河陡坡消落带为研究区域,提出了一种耦合RBFNN模型(Radial Basis Function Neural Network)与CASA模型(Carnegie-Ames-Stanford approach)的新方法(RBF-CASA)。基于RBFNN建立环境影响因子模型,借助高程数据及植被指数等特征计算适合消落带区域的环境影响因子。结合CASA模型中温度和水分胁迫因子,提高植被在像元尺度上的净初级生产力(Net Primary Productivity,NPP)的估算精度,并对反演结果进行验证。模型验证结果显示:RBF-CASA模型估算值与观测值的决定系数(Coefficient of determination,R^(2))为0.730(P<0.01,n=32)。对比原始CASA模型,平均绝对误差(Mean absolute error,MAE)降低10.991,均方根误差(Root mean square error,RMSE)降低了23.861,相对均方根误差(Relative root mean square error,RRMSE)降低5.10%,平均绝对百分误差(Mean absolute percentage error,MAPE)降低1.12%。使用提出的RBF-CASA模型在库区水位落干期(7—8月份)进行固碳量估算,结果表明:NPP月均值在66.234—134.144g C/m^(2)之间,NPP随着高程的增加呈现起伏变化,其总量在150—155m之间达到峰值,均值在170m以上区域最高。在2021年9月植被NPP均值为35.883g C/m^(2),2022年9月植被NPP均值为25.964g C/m^(2),由于降雨量减少、长江水位下降,在2021—2022年间植被恢复情况较差。研究结果可为库区碳循环、生态净化及生态修复等决策提供科学依据。 展开更多
关键词 基于过程的遥感模型(CASA) 机器学习 植被净初级生产力(npp) 无人机 环境影响因子模型
下载PDF
Assessing the Dynamics of Grassland Net Primary Productivity in Response to Climate Change at the Global Scale 被引量:15
11
作者 LIU Yangyang YANG Yue +5 位作者 WANG Qian KHALIFA Muhammad ZHANG Zhaoying TONG Linjing LI Jianlong SHI Aiping 《Chinese Geographical Science》 SCIE CSCD 2019年第5期725-740,共16页
Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the glo... Understanding the net primary productivity(NPP) of grassland is crucial to evaluate the terrestrial carbon cycle. In this study, we investigated the spatial distribution and the area of global grassland across the globe. Then, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate global grassland NPP and explore the spatio-temporal variations of grassland NPP in response to climate change from 1982 to 2008. Results showed that the largest area of grassland distribution during the study period was in Asia(1737.23 × 104 km^2), while the grassland area in Europe was relatively small(202.83 × 10~4 km^2). Temporally, the total NPP increased with fluctuations from 1982 to 2008, with an annual increase rate of 0.03 Pg C/yr. The total NPP experienced a significant increasing trend from 1982 to 1995, while a decreasing trend was observed from 1996 to 2008. Spatially, the grassland NPP in South America and Africa were higher than the other regions, largely as a result of these regions are under warm and wet climatic conditions. The highest mean NPP was recorded for savannas(560.10 g C/(m^2·yr)), whereas the lowest was observed in open shrublands with an average NPP of 162.53 g C/(m^2·yr). The relationship between grassland NPP and annual mean temperature and annual precipitation(AMT, AP, respectively) varies with changes in AP, which indicates that, grassland NPP is more sensitive to precipitation than temperature. 展开更多
关键词 Carnegie-Ames-Stanford Approach(CASA) net primary productivity(npp) SPATIO-TEMPORAL dynamic climate variation GRASSLAND ECOSYSTEMS
下载PDF
The net primary productivity of Mid-Jurassic peatland and its control factors: Evidenced by the Ordos Basin 被引量:8
12
作者 Wang Dongdong Yan Zhiming +2 位作者 Liu Haiyan Lv Dawei Hou Yijun 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第2期177-185,共9页
Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its cont... Using the large-scale thick 4# coal seam from the Mid-Jurassic in the southern Ordos Basin as an example, this paper studied the net primary productivity(NPP) level of the Mid-Jurassic peatland, and discussed its control factors. Geophysical logging signals were used for a spectrum analysis to obtain the Milankovitch cycle parameters in coal seam. These were then used to calculate the accumulation rate of the residual carbon in 4# coal seam. The carbon loss can be calculated according to the density and residual carbon content of 4# coal seam. Then, the total carbon accumulation rate of the peatland was further derived, and the NPP of peatland was determined. The results show that the NPP of MidJurassic peatland is higher than that of Holocene at the same latitude. Comprehensive analysis indicates that the temperature, carbon dioxide and oxygen levels in atmosphere are the main control factors of the NPP of Mid-Jurassic peatland. 展开更多
关键词 net primary productivity(npp) PEATLAND MILANKOVITCH cycle Carbon accumulation rate Mid-Jurassic
下载PDF
Identification of Milankovitch Cycles and Calculation of Net Primary Productivity of Paleo-peatlands using Geophysical Logs of Coal Seams 被引量:2
13
作者 SHAO Longyi WEN He +4 位作者 GAO Xiangyu Baruch SPIRO WANG Xuetian YAN Zhiming David J.LARGE 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第6期1830-1841,共12页
Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining... Individual coal seams formed in paleo-peatlands represent sustained periods of terrestrial carbon accumulation and a key environmental indicator attributed to this record is the rate of carbon accumulation.Determining the rate of carbon accumulation requires a measure of time contained within the coal.This study aimed to determine this rate via the identification of Milankovitch orbital cycles in the coals.The geophysical log is an ideal paleoclimate proxy and has been widely used in the study of sedimentary records using spectral analysis.Spectral analyses of geophysical log from thick coal seams can be used to identify the Milankovitch cycles and to calculate the period of the coal deposition.By considering the carbon loss during coalification,the long-term average carbon accumulation rate and net primary productivity(NPP)of paleo-peatlands in coal seams can be obtained.This review paper presents the procedures of analysis,assessment of results and interpretation of geophysical logs in determining the NPP of paleo-peatlands. 展开更多
关键词 paleo-peatlands Milankovitch cycle carbon accumulation rate net primary productivity(npp) coal seam
下载PDF
Quantitative Assessment of the Relative Contributions of Climate and Human Factors to Net Primary Productivity in the Ili River Basin of China and Kazakhstan 被引量:2
14
作者 LIU Liang GUAN Jingyun +3 位作者 HAN Wanqiang JU Xifeng MU Chen ZHENG Jianghua 《Chinese Geographical Science》 SCIE CSCD 2022年第6期1069-1082,共14页
It is necessary to quantitatively study the relationship between climate and human factors on net primary productivity(NPP)inorder to understand the driving mechanism of NPP and prevent desertification.This study inve... It is necessary to quantitatively study the relationship between climate and human factors on net primary productivity(NPP)inorder to understand the driving mechanism of NPP and prevent desertification.This study investigated the spatial and temporal differentiation features of actual net primary productivity(ANPP)in the Ili River Basin,a transboundary river between China and Kazakhstan,as well as the proportional contributions of climate and human causes to ANPP variation.Additionally,we analyzed the pixel-scale relationship between ANPP and significant climatic parameters.ANPP in the Ili River Basin increased from 2001 to 2020 and was lower in the northeast and higher in the southwest;furthermore,it was distributed in a ring around the Tianshan Mountains.In the vegetation improvement zone,human activities were the dominant driving force,whereas in the degraded zone,climate change was the primary major driving force.The correlation coefficients of ANPP with precipitation and temperature were 0.322 and 0.098,respectively.In most areas,there was a positive relationship between vegetation change,temperature and precipitation.During 2001 to 2020,the basin’s climatic change trend was warm and humid,which promoted vegetation growth.One of the driving factors in the vegetation improvement area was moderate grazing by livestock. 展开更多
关键词 net primary productivity(npp) actual net primary productivity(Anpp) climate change human activities Ili River Basin
下载PDF
Classification and Net Primary Productivity of the Southern China's Grasslands Ecosystem Based on Improved Comprehensive and Sequential Classification System(CSCS) Approach 被引量:6
15
作者 SUN Zheng-guo SUN Cheng-ming +2 位作者 ZHOU Wei JU Wei-min LI Jian-long 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第4期893-903,共11页
This research classified vegetation types and evaluated net primary productivity (NPP) of southern China's grasslands based on the improved comprehensive and sequential classification system (CSCS), and proposed ... This research classified vegetation types and evaluated net primary productivity (NPP) of southern China's grasslands based on the improved comprehensive and sequential classification system (CSCS), and proposed 5 thermal grades and 6 humidity grades. Four classes of grasslands vegetation were recognized by improved CSCS, namely, tundra grassland class, typical grassland class, mixed grassland class and alpine grassland class. At the type level, 14 types of vegetations (9 grasslands and 5 forests) were classified. The NPP had a trend to decrease from east to west and south to north, and the annual mean NPP was estimated to be 656.3 g C m-2 yr-1. The NPP value of alpine grassland class was relatively high, generally more than 1200 g C m2 yr-1. The NPP value of mixed grassland class was in a range from 1 000 to 1200 g C m-2 yr-1. Tundra grassland class was located in southeastern Tibet with high elevation, and its NPP value was the lowest (〈600 g C m'2yrl). The typical grassland class distributed in most of the area, and its NPP value was generally from 600 to 1000 g C m-2 yr-1. The total NPP value in the study area was 68.46 Tg C. The NPP value of typical grassland class was the highest (48.44 Tg C), and mixed grassland class was the second (16.54 Tg C), followed by alpine grassland class (3.22 Tg C), with tundra grassland class being the lowest (0.25 Tg C). For all the grasslands types, the total NPP of forest meadow was the highest (34.81 Tg C), followed by sparse forest brush (16.54 Tg C), and montane meadow was the lowest (0.01 Tg C). 展开更多
关键词 improved CSCS hydro-thermal pattern southem China grasslands classes and types net primary productivity npp
下载PDF
Estimation of net primary productivity in China using remote sensing data 被引量:10
16
作者 SUN Rui, ZHU Qi-jiang (Dept. of Resources and Environment Sciences, Beijing Normal University, Beijing 100875, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第1期14-23,共10页
It is significant to estimate terrestrial net primary productivity (NPP) accurately not only for global change research, but also for natural resources management to achieve sustainable development. Remote sensing dat... It is significant to estimate terrestrial net primary productivity (NPP) accurately not only for global change research, but also for natural resources management to achieve sustainable development. Remote sensing data can describe spatial distribution of plant resources better. So, in this paper an NPP model based on remote sensing data and climate data is developed. And 1km resolution AVHRR NDVI data are used to estimate the spatial distribution and seasonal change of NPP in China. The results show that NPP estimated using remote sensing data are more close to truth. Total annual NPP in China is 2.645X109 tC. The spatial distribution of NPP in China is mainly affected by precipitation and has the trend of decreasing from southeast to northwest. 展开更多
关键词 remote sensing net primary productivity VEGETATION MODEL seasonal change
下载PDF
Examining Forest Net Primary Productivity Dynamics and Driving Forces in Northeastern China During 1982–2010 被引量:16
17
作者 MAO Dehua WANG Zongming +2 位作者 WU Changshan SONG Kaishan REN Chunying 《Chinese Geographical Science》 SCIE CSCD 2014年第6期631-646,共16页
Forest net primary productivity (NPP) is a key parameter for forest monitoring and management. In this study, monthly and annual forest NPP in the northeastern China from 1982 to 2010 were simulated by using Carnegi... Forest net primary productivity (NPP) is a key parameter for forest monitoring and management. In this study, monthly and annual forest NPP in the northeastern China from 1982 to 2010 were simulated by using Carnegie-Ames-Stanford Approach (CASA) model with normalized difference vegetation index (NDVI) sequences derived from Advanced Very High Resolution Radiometer (AVHRR) Global Invento y Modeling and Mapping Studies (GIMMS) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products. To address the problem of data inconsistency between AVHRR and MODIS data, a per-pixel unary linear regres- sion model based on least ~;quares method was developed to derive the monthly NDVI sequences. Results suggest that estimated forest NPP has mean relative error of 18.97% compared to observed NPP from forest inventory. Forest NPP in the northeastern China in- creased significantly during the twenty-nine years. The results of seasonal dynamic show that more clear increasing trend of forest NPP occurred in spring and awmnn. This study also examined the relationship between forest NPP and its driving forces including the climatic and anthropogenic factors. In spring and winter, temperature played the most pivotal role in forest NPR In autumn, precipitation acted as the most importanl factor affecting forest NPP, while solar radiation played the most important role in the summer. Evaportran- spiration had a close correlation with NPP for coniferous forest, mixed coniferous broadleaved forest, and broadleaved deciduous forest. Spatially, forest NPP in the Da Hinggan Mountains was more sensitive to climatic changes than in the other ecological functional re- gions. In addition to climalie change, the degradation and improvement of forests had important effects on forest NPP. Results in this study are helpful for understanding the regional carbon sequestration and can enrich the cases for the monitoring of vegetation during long time series. 展开更多
关键词 FOREST net primary productivity npp Carnegie-Ames-Stanford Approach (CASA) model normalized difference vegeta-tion index (NDVI) northeastern China
下载PDF
Impacts of Climate Change on Net Primary Productivity in Arid and Semiarid Regions of China 被引量:15
18
作者 WANG Hao LIU Guohua +3 位作者 LI Zongshan YE Xin WANG Meng GONG Li 《Chinese Geographical Science》 SCIE CSCD 2016年第1期35-47,共13页
In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this ... In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future. 展开更多
关键词 climate change net primary productivity npp annual/seasonal variability trend analysis arid/semiarid regions of China(ASAC)
下载PDF
Spatio-temporal Pattern of Net Primary Productivity in Hengduan Mountains area, China: Impacts of Climate Change and Human Activities 被引量:12
19
作者 CHEN Tiantian PENG Li +1 位作者 LIU Shaoquan WANG Qiang 《Chinese Geographical Science》 SCIE CSCD 2017年第6期948-962,共15页
Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford App... Net primary productivity(NPP), a metric used to define and identify changes in plant communities, is greatly affected by climate change, human activities and other factors. Here, we used the Carnegie-Ames-Stanford Approach(CASA) model to estimate the NPP of plant communities in Hengduan Mountains area of China, and to explore the relationship between NPP and altitude in this region. We examined the mechanisms underlying vegetation growth responses to climate change and quantitatively assessed the effects of ecological protection measures by partitioning the contributions of climate change and human activities to NPP changes. The results demonstrated that: 1) the average total and annual NPP values over the years were 209.15 Tg C and 468.06 g C/(m2·yr), respectively. Their trend increasingly fluctuated, with spatial distribution strongly linked to altitude(i.e., lower and higher NPP in high altitude and low altitude areas, respectively) and 2400 m represented the marginal altitude for vegetation differentiation; 2) areas where climate was the main factor affecting NPP accounted for 18.2% of the total research area, whereas human activities were the primary factor influencing NPP in 81.8% of the total research area, which indicated that human activity was the main force driving changes in NPP. Areas where climatic factors(i.e., temperature and precipitation) were the main driving factors occupied 13.6%(temperature) and 6.0%(precipitation) of the total research area, respectively. Therefore, the effect of temperature on NPP changes was stronger than that of precipitation; and 3) the majority of NPP residuals from 2001 to 2014 were positive, with human activities playing an active role in determining regional vegetation growth, possibly due to the return of farmland back to forest and natural forest protection. However, this positive trend is decreasing. This clearly shows the periodical nature of ecological projects and a lack of long-term effectiveness. 展开更多
关键词 net primary productivity npp Carnegie-Ames-Stanford Approach (CASA) model climate change human activities Hengduan Mountains area
下载PDF
Carbon storage and net primary productivity in Canadian boreal mixedwood stands 被引量:6
20
作者 Nicholas J.Payne D.Allan Cameron +1 位作者 Jean-Denis Leblanc Ian K.Morrison 《Journal of Forestry Research》 SCIE CAS CSCD 2019年第5期1667-1678,共12页
Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to... Canadian boreal mixedwood forests are extensive,with large potential for carbon sequestration and storage;thus,knowledge of their carbon stocks at different stand ages is needed to adapt forest management practices to help meet climate-change mitigation goals.Carbon stocks were quantified at three Ontario boreal mixedwood sites.A harvested stand,a juvenile stand replanted with spruce seedlings and a mature stand had total carbon stocks(±SE)of 133±13 at age 2,130±13 at age 25,and 207±15 Mg C ha^-1 at age 81 years.At the clear-cut site,stocks were reduced by about 40%or 90 Mg C ha^-1 at harvest.Vegetation held 27,34 and 62%of stocks,while detritus held 34,29 and 13%of stocks at age 2,25 and 81,respectively.Mineral soil carbon stocks averaged 51 Mg C ha^-1,and held 38,37 and 25%of stocks.Aboveground net primary productivity(±SE)in the harvested and juvenile stand was 2.1±0.2 and 3.7±0.3 Mg C ha^-1 per annum(p.a.),compared to 2.6±2.5 Mg C ha^-1 p.a.in the mature stand.The mature canopies studied had typical boreal mixedwood composition and mean carbon densities of 208 Mg C ha^-1,which is above average for managed Canadian boreal forest ecosystems.A comparison of published results from Canadian boreal forest ecosystems showed that carbon stocks in mixedwood stands are typically higher than coniferous stands at all ages,which was also true for stocks in vegetation and detritus.Also,aboveground net primary productivity was typically found to be higher in mixedwood than in coniferous boreal forest stands over a range of ages.Measurements from this study,together with those published from the other boreal forest stands demonstrate the potential for enhanced carbon sequestration through modified forest management practices to take advantage of Canadian boreal mixedwood stand characteristics. 展开更多
关键词 ABOVEGROUND net primary productivity BOREAL mixedwood forest Carbon stocks Mixedwood STAND management STAND age
下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部