Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to ...Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum.展开更多
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi...The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.展开更多
In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic i...In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.展开更多
An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks....An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks. The hybrid gateway discovery scheme that combined the advantages of a proactive and reactive gateway discovery approach is used to achieve high connectivity while keeping overhead costs low. By exchanging ad hoc on-demand distance vector (AODV) hello packet which includes additional fields named symmetric neighbor list and asymmetric neighbor list, unidirectional links are removed from route computation and broadcast storm can also be relieved simultaneously. Performance results using ns-2 simulations, under varying numbers of unidirectional links and node speeds, show that this improved Internet connectivity approach can provide better performance than others.展开更多
This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control fram...This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.展开更多
In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring spac...In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring space) of urban bustransport networks (BTNs) in four major cities of China. The underlying features of the connectivity correlations are shown in two statistical ways. One is the correlation between the (weighted) average degree of all the nearest neighbouring vertices with degree k, (Knn^w,(k)) Knn(k), and k, and the other is the correlations between the assortativity coefficient r and, respectively, the network size N, the network diameter D, the averaged clustering coefficient C, and the averaged distance (l). The obtained results show qualitatively the same connectivity correlations of all the considered cities under all the three spaces.展开更多
As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orb...As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.展开更多
In network theory,a complex network represents a system whose evolving structure and dynamic behavior contribute to its robustness.The natural connectivity is recently proposed as a spectral measure to characterize th...In network theory,a complex network represents a system whose evolving structure and dynamic behavior contribute to its robustness.The natural connectivity is recently proposed as a spectral measure to characterize the robustness of complex networks.We decompose the natural connectivity of a network as local natural connectivity of its connected components and quantify their contributions to the network robustness.In addition,we compare the natural connectivity of a network with that of an induced subgraph of it based on interlacing theorems.As an application,we derive an inequality for eigenvalues of Erdös-Rényi random graphs.展开更多
In this study, we investigate the cross-frequency coupling and functional brain networks in the subjects with temporal lobe epilepsy(TLE) using interictal EEG signals. The phase to phase synchronization within and acr...In this study, we investigate the cross-frequency coupling and functional brain networks in the subjects with temporal lobe epilepsy(TLE) using interictal EEG signals. The phase to phase synchronization within and across frequency bands is calculated and a significant difference between the epilepsy and control groups is observed. Compared with the controls,the epilepsy patients exhibit a stronger within-frequency coupling(WFC) within theta and beta bands, and shows a stronger cross-frequency coupling(CFC) in the delta–alpha and theta–alpha band pairs, but a weakened CFC in alpha–beta band pairs. The weakened coupling between alpha and high frequency band reflects a suppression of phase modulation between the brain regions related to epilepsy. Moreover, WFC and CFC are positively correlated, which is higher in the patients relative to controls. We further reconstruct functional brain connectivity and find that both WFC and CFC networks show small-world properties. For the epilepsy, the small-world efficiency is enhanced in the CFC networks in delta–alpha and theta–alpha band pairs, whereas weakened between alpha and beta bands, which suggests a shift away from the optimal operating point in the epileptic brain with a new balance between WFC and CFC. Our results may help us to understand the important role of information communication across different frequency bands and shed new light on the study of pathology of epilepsy.展开更多
Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics b...Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.展开更多
A novel user association model for heterogeneous network(Het Net) with dual connectivity(DC) and constrained backhaul is proposed in this paper, where not only the best combination of serving macro cell and small cell...A novel user association model for heterogeneous network(Het Net) with dual connectivity(DC) and constrained backhaul is proposed in this paper, where not only the best combination of serving macro cell and small cell for each user to associate is selected but also the optimal traffi c split between the macro cell and small cell is determined to enhance both radio resource effi ciency and backhaul capacity utilization. To solve this optimization problem, an intuitive algorithm based on iteratively solving two sub-problems is proposed. One sub-problem is a binary integer programming problem and a corresponding greedy algorithm is proposed, while the other sub-problem is a simple linear programming problem and can be easily solved. Numerical results show that the proposed model and algorithm can achieve better radio resource effi ciency and backhaul capacity utilization compared with user association in Het Net without DC, which validate the capacity enhancement potentials of radio resource coordination in Het Net with DC.展开更多
Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the...Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.展开更多
Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to i...Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.展开更多
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ...The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.展开更多
Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore func...Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.展开更多
Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researche...Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researchers began to exploit the“pre-training and fine-tuning”training process for multi-element segmentation,reducing the time spent on manual annotation.However,the existing element segmentation model only focuses on the overall accuracy at the pixel level,ignoring whether the element connectivity relationship can be correctly identified.To this end,this paper proposes a PCB CT image element segmentation model optimizing the semantic perception of connectivity relationship(OSPC-seg).The overall training process adopts a“pre-training and fine-tuning”training process.A loss function that optimizes the semantic perception of circuit connectivity relationship(OSPC Loss)is designed from the aspect of alleviating the class imbalance problem and improving the correct connectivity rate.Also,the correct connectivity rate index(CCR)is proposed to evaluate the model’s connectivity relationship recognition capabilities.Experiments show that mIoU and CCR of OSPC-seg on our datasets are 90.1%and 97.0%,improved by 1.5%and 1.6%respectively compared with the baseline model.From visualization results,it can be seen that the segmentation performance of connection positions is significantly improved,which also demonstrates the effectiveness of OSPC-seg.展开更多
Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate resul...Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.展开更多
On April 1Oth,“Silk Road People-to-People Connectivity”Care for the Future Activity and a donation ceremony of school sports goods were held at China-Myanmar Friendship School,Basic Education High School(BEHS)No.14,...On April 1Oth,“Silk Road People-to-People Connectivity”Care for the Future Activity and a donation ceremony of school sports goods were held at China-Myanmar Friendship School,Basic Education High School(BEHS)No.14,in Nay Pyi Taw,Myanmar.展开更多
Natural connectivity has been recently proposed to efficiently characterize the structural robustness of complex networks.The natural connectivity,interpreted as the Helmholtz free energy of a network,can be derived f...Natural connectivity has been recently proposed to efficiently characterize the structural robustness of complex networks.The natural connectivity,interpreted as the Helmholtz free energy of a network,can be derived from the graph spectrum.We extend the concept of natural connectivity to weighted complex networks,in which the weight represents the number of multiple edges.We prove that the weighted natural connectivity changes monotonically when the weights are increased or decreased.We investigate the influence of weight on the network robustness within scenarios of weight changing and show that the weighted natural connectivity allows a precise quantitative analysis of the structural robustness for weighted complex networks.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金supported by the National Natural Science Foundation of China(No.62001045)Beijing Municipal Natural Science Foundation(No.4214059)+1 种基金Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2021ZT17)Fundamental Research Funds for the Central Universities(No.2022RC09).
文摘Inter-datacenter elastic optical networks(EON)need to provide the service for the requests of cloud computing that require not only connectivity and computing resources but also network survivability.In this paper,to realize joint allocation of computing and connectivity resources in survivable inter-datacenter EONs,a survivable routing,modulation level,spectrum,and computing resource allocation algorithm(SRMLSCRA)algorithm and three datacenter selection strategies,i.e.Computing Resource First(CRF),Shortest Path First(SPF)and Random Destination(RD),are proposed for different scenarios.Unicast and manycast are applied to the communication of computing requests,and the routing strategies are calculated respectively.Simulation results show that SRMLCRA-CRF can serve the largest amount of protected computing tasks,and the requested calculation blocking probability is reduced by 29.2%,28.3%and 30.5%compared with SRMLSCRA-SPF,SRMLSCRA-RD and the benchmark EPS-RMSA algorithms respectively.Therefore,it is more applicable to the networks with huge calculations.Besides,SRMLSCRA-SPF consumes the least spectrum,thereby exhibiting its suitability for scenarios where the amount of calculation is small and communication resources are scarce.The results demonstrate that the proposed methods realize the joint allocation of computing and connectivity resources,and could provide efficient protection for services under single-link failure and occupy less spectrum.
基金the support of the National Nature Science Foundation of China(No.52074336)Emerging Big Data Projects of Sinopec Corporation(No.20210918084304712)。
文摘The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil.
基金The National Key Technology R& D Program of Chinaduring the 11th Five-Year Plan Period (No.2006BAJ18B03).
文摘In order to decrease the calculation complexity of connectivity reliability of road networks, an improved recursive decomposition arithmetic is proposed. First, the basic theory of recursive decomposition arithmetic is reviewed. Then the characteristics of road networks, which are different from general networks, are analyzed. Under this condition, an improved recursive decomposition arithmetic is put forward which fits road networks better. Furthermore, detailed calculation steps are presented which are convenient for the computer, and the advantage of the approximate arithmetic is analyzed based on this improved arithmetic. This improved recursive decomposition arithmetic directly produces disjoint minipaths and avoids the non-polynomial increasing problems. And because the characteristics of road networks are considered, this arithmetic is greatly simplified. Finally, an example is given to prove its validity.
基金The National Natural Science Foundation of China(No60362001)
文摘An improved internetworking approach is proposed to enhance the Internet connectivity which is deteriorated due to unidirectional links and blind rebroadcasting of gateway discovery packets for mobile ad hoc networks. The hybrid gateway discovery scheme that combined the advantages of a proactive and reactive gateway discovery approach is used to achieve high connectivity while keeping overhead costs low. By exchanging ad hoc on-demand distance vector (AODV) hello packet which includes additional fields named symmetric neighbor list and asymmetric neighbor list, unidirectional links are removed from route computation and broadcast storm can also be relieved simultaneously. Performance results using ns-2 simulations, under varying numbers of unidirectional links and node speeds, show that this improved Internet connectivity approach can provide better performance than others.
基金the financial support from the Natural Sciences and Engineering Research Council of Canada(NSERC)。
文摘This study investigates resilient platoon control for constrained intelligent and connected vehicles(ICVs)against F-local Byzantine attacks.We introduce a resilient distributed model-predictive platooning control framework for such ICVs.This framework seamlessly integrates the predesigned optimal control with distributed model predictive control(DMPC)optimization and introduces a unique distributed attack detector to ensure the reliability of the transmitted information among vehicles.Notably,our strategy uses previously broadcasted information and a specialized convex set,termed the“resilience set”,to identify unreliable data.This approach significantly eases graph robustness prerequisites,requiring only an(F+1)-robust graph,in contrast to the established mean sequence reduced algorithms,which require a minimum(2F+1)-robust graph.Additionally,we introduce a verification algorithm to restore trust in vehicles under minor attacks,further reducing communication network robustness.Our analysis demonstrates the recursive feasibility of the DMPC optimization.Furthermore,the proposed method achieves exceptional control performance by minimizing the discrepancies between the DMPC control inputs and predesigned platoon control inputs,while ensuring constraint compliance and cybersecurity.Simulation results verify the effectiveness of our theoretical findings.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 70671089 and 10635040)the foundation of XM06-142
文摘In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring space) of urban bustransport networks (BTNs) in four major cities of China. The underlying features of the connectivity correlations are shown in two statistical ways. One is the correlation between the (weighted) average degree of all the nearest neighbouring vertices with degree k, (Knn^w,(k)) Knn(k), and k, and the other is the correlations between the assortativity coefficient r and, respectively, the network size N, the network diameter D, the averaged clustering coefficient C, and the averaged distance (l). The obtained results show qualitatively the same connectivity correlations of all the considered cities under all the three spaces.
基金National Natural Science Foundation of China(60532030)
文摘As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.
文摘In network theory,a complex network represents a system whose evolving structure and dynamic behavior contribute to its robustness.The natural connectivity is recently proposed as a spectral measure to characterize the robustness of complex networks.We decompose the natural connectivity of a network as local natural connectivity of its connected components and quantify their contributions to the network robustness.In addition,we compare the natural connectivity of a network with that of an induced subgraph of it based on interlacing theorems.As an application,we derive an inequality for eigenvalues of Erdös-Rényi random graphs.
基金Project supported by the National Natural Science Foundation of China(Grant No.61302002)
文摘In this study, we investigate the cross-frequency coupling and functional brain networks in the subjects with temporal lobe epilepsy(TLE) using interictal EEG signals. The phase to phase synchronization within and across frequency bands is calculated and a significant difference between the epilepsy and control groups is observed. Compared with the controls,the epilepsy patients exhibit a stronger within-frequency coupling(WFC) within theta and beta bands, and shows a stronger cross-frequency coupling(CFC) in the delta–alpha and theta–alpha band pairs, but a weakened CFC in alpha–beta band pairs. The weakened coupling between alpha and high frequency band reflects a suppression of phase modulation between the brain regions related to epilepsy. Moreover, WFC and CFC are positively correlated, which is higher in the patients relative to controls. We further reconstruct functional brain connectivity and find that both WFC and CFC networks show small-world properties. For the epilepsy, the small-world efficiency is enhanced in the CFC networks in delta–alpha and theta–alpha band pairs, whereas weakened between alpha and beta bands, which suggests a shift away from the optimal operating point in the epileptic brain with a new balance between WFC and CFC. Our results may help us to understand the important role of information communication across different frequency bands and shed new light on the study of pathology of epilepsy.
文摘Functional magnetic resonance imaging(fMRI)is a popular tool used to investigate not only how the brain responds to specific stimuli during sensorimotor or cognitive tasks,but also brain activity at rest.The physics beyond this approach is based on the analysis of the blood oxygenation level-dependent signal.
基金supported by the National High Technical Research and Development Program of China(863 program)(No.2015AA01A705)
文摘A novel user association model for heterogeneous network(Het Net) with dual connectivity(DC) and constrained backhaul is proposed in this paper, where not only the best combination of serving macro cell and small cell for each user to associate is selected but also the optimal traffi c split between the macro cell and small cell is determined to enhance both radio resource effi ciency and backhaul capacity utilization. To solve this optimization problem, an intuitive algorithm based on iteratively solving two sub-problems is proposed. One sub-problem is a binary integer programming problem and a corresponding greedy algorithm is proposed, while the other sub-problem is a simple linear programming problem and can be easily solved. Numerical results show that the proposed model and algorithm can achieve better radio resource effi ciency and backhaul capacity utilization compared with user association in Het Net without DC, which validate the capacity enhancement potentials of radio resource coordination in Het Net with DC.
基金supported by the Natural Science Foundation of Guangdong Province,No.2016A030313180(to FCJ)
文摘Previous studies on brain functional connectivity networks in children have mainly focused on changes in function in specific brain regions, as opposed to whole brain connectivity in healthy children. By analyzing the independent components of activation and network connectivity between brain regions, we examined brain activity status and development trends in children aged 3 and 5 years. These data could provide a reference for brain function rehabilitation in children with illness or abnormal function. We acquired functional magnetic resonance images from 15 3-year-old children and 15 5-year-old children under natural sleep cond让ions. The participants were recruited from five kindergartens in the Nanshan District of Shenzhen City, China. The parents of the participants signed an informed consent form with the premise that they had been fully informed regarding the experimental protocol. We used masked independent component analysis and BrainNet Viewer software to explore the independent components of the brain and correlation connections between brain regions. We identified seven independent components in the two groups of children, including the executive control network, the dorsal attention network, the default mode network, the left frontoparietal network, the right frontoparietal network, the salience network, and the motor network. In the default mode network, the posterior cingulate cortex, medial frontal gyrus, and inferior parietal lobule were activated in both 3- and 5-year-old children, supporting the "three-brain region theory” of the default mode network. In the frontoparietal network, the frontal and parietal gyri were activated in the two groups of children, and functional connectivity was strengthened in 5-year-olds compared with 3-year-olds, although the nodes and network connections were not yet mature. The high-correlation network connections in the default mode networks and dorsal attention networks had been significantly strengthened in 5-year-olds vs. 3-year-olds. Further, the salience network in the 3-year-old children included an activated insula/inferior frontal gyrus-anterior cingulate cortex network circu让 and an activated thalamus-parahippocampal-posterior cingulate cortex-subcortical regions network circuit. By the age of 5 years, no des and high-correlation network connections (edges) were reduced in the salience network. Overall, activation of the dorsal attention network, default mode network, left frontoparietal network, and right frontoparietal network increased (the volume of activation increased, the signals strengthened, and the high-correlation connections increased and strengthened) in 5-year-olds compared with 3-year-olds, but activation in some brain nodes weakened or disappeared in the salience network, and the network connections (edges) were reduced. Between the ages of 3 and 5 years, we observed a tendency for function in some brain regions to be strengthened and for the generalization of activation to be reduced, indicating that specialization begins to develop at this time. The study protocol was approved by the local ethics committee of the Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences in China with approval No. SIAT-IRB- 131115-H0075 on November 15, 2013.
基金This project was supported by grants from National Natural Science Foundation of China(No.81701655 and No.81600317)Platform Research Foundation of Union Hospital,Tongji Medical College,Huazhong university of Science and Technology(No.02.03.2017-14).
文摘Examining the spontaneous BOLD activity to understand the neural mechanism of Parkinson’s disease(PD)with mild cognitive impairment(MCI)is a focus in resting-state functional MRI(rs-fMRI)studies.This study aimed to investigate the alteration of brain functional connectivity in PD with MCI in a systematical way at two levels:functional connectivity analysis within resting state networks(RSNs)and functional network connectivity(FNC)analysis.Using group independent component analysis(ICA)on rs-fMRI data acquired from 30 participants(14 healthy controls and 16 PD patients with MCI),16 RSNs were identified,and functional connectivity analysis within the RSNs and FNC analysis were carried out between groups.Compared to controls,patients with PD showed decreased functional connectivity within putamen network,thalamus network,cerebellar network,attention network,and self-referential network,and increased functional connectivity within execution network.Globally disturbed,mostly increased functional connectivity of FNC was observed in PD group,and insular network and execution network were the dominant network with extensively increased functional connectivity with other RSNs.Cerebellar network showed decreased functional connectivity with caudate network,insular network,and self-referential network.In general,decreased functional connectivity within RSNs and globally disturbed,mostly increased functional connectivity of FNC may be characteristics of PD.Increased functional connectivity within execution network may be an early marker of PD.The multi-perspective study based on RSNs may be a valuable means to assess functional changes corresponding to specific RSN,contributing to the understanding of the neural mechanism of PD.
基金funded by the Natural Science Foundation of Xinjiang Uygur Autonomous Region (No.2022D01A330)the CNPC (China National Petroleum Corporation)Scientific Research and Technology Development Project (Grant No.2021DJ1501)+1 种基金National Natural Science Foundation Project (No.52274030)“Tianchi Talent”Introduction Plan of Xinjiang Uygur Autonomous Region (2022).
文摘The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy.
基金supported by the National Natural Science Foundation of China,No.60905024
文摘Studies have shown that functional network connection models can be used to study brain net- work changes in patients with schizophrenia. In this study, we inferred that these models could also be used to explore functional network connectivity changes in stroke patients. We used independent component analysis to find the motor areas of stroke patients, which is a novel way to determine these areas. In this study, we collected functional magnetic resonance imaging datasets from healthy controls and right-handed stroke patients following their first ever stroke. Using independent component analysis, six spatially independent components highly correlat- ed to the experimental paradigm were extracted. Then, the functional network connectivity of both patients and controls was established to observe the differences between them. The results showed that there were 11 connections in the model in the stroke patients, while there were only four connections in the healthy controls. Further analysis found that some damaged connections may be compensated for by new indirect connections or circuits produced after stroke. These connections may have a direct correlation with the degree of stroke rehabilitation. Our findings suggest that functional network connectivity in stroke patients is more complex than that in hea- lthy controls, and that there is a compensation loop in the functional network following stroke. This implies that functional network reorganization plays a very important role in the process of rehabilitation after stroke.
文摘Computed Tomography(CT)is a commonly used technology in Printed Circuit Boards(PCB)non-destructive testing,and element segmentation of CT images is a key subsequent step.With the development of deep learning,researchers began to exploit the“pre-training and fine-tuning”training process for multi-element segmentation,reducing the time spent on manual annotation.However,the existing element segmentation model only focuses on the overall accuracy at the pixel level,ignoring whether the element connectivity relationship can be correctly identified.To this end,this paper proposes a PCB CT image element segmentation model optimizing the semantic perception of connectivity relationship(OSPC-seg).The overall training process adopts a“pre-training and fine-tuning”training process.A loss function that optimizes the semantic perception of circuit connectivity relationship(OSPC Loss)is designed from the aspect of alleviating the class imbalance problem and improving the correct connectivity rate.Also,the correct connectivity rate index(CCR)is proposed to evaluate the model’s connectivity relationship recognition capabilities.Experiments show that mIoU and CCR of OSPC-seg on our datasets are 90.1%and 97.0%,improved by 1.5%and 1.6%respectively compared with the baseline model.From visualization results,it can be seen that the segmentation performance of connection positions is significantly improved,which also demonstrates the effectiveness of OSPC-seg.
基金This research is partially supported by grant from the National Natural Science Foundation of China(No.72071019)grant from the Natural Science Foundation of Chongqing(No.cstc2021jcyj-msxmX0185)grant from the Chongqing Graduate Education and Teaching Reform Research Project(No.yjg193096).
文摘Bone age assessment(BAA)helps doctors determine how a child’s bones grow and develop in clinical medicine.Traditional BAA methods rely on clinician expertise,leading to time-consuming predictions and inaccurate results.Most deep learning-based BAA methods feed the extracted critical points of images into the network by providing additional annotations.This operation is costly and subjective.To address these problems,we propose a multi-scale attentional densely connected network(MSADCN)in this paper.MSADCN constructs a multi-scale dense connectivity mechanism,which can avoid overfitting,obtain the local features effectively and prevent gradient vanishing even in limited training data.First,MSADCN designs multi-scale structures in the densely connected network to extract fine-grained features at different scales.Then,coordinate attention is embedded to focus on critical features and automatically locate the regions of interest(ROI)without additional annotation.In addition,to improve the model’s generalization,transfer learning is applied to train the proposed MSADCN on the public dataset IMDB-WIKI,and the obtained pre-trained weights are loaded onto the Radiological Society of North America(RSNA)dataset.Finally,label distribution learning(LDL)and expectation regression techniques are introduced into our model to exploit the correlation between hand bone images of different ages,which can obtain stable age estimates.Extensive experiments confirm that our model can converge more efficiently and obtain a mean absolute error(MAE)of 4.64 months,outperforming some state-of-the-art BAA methods.
文摘On April 1Oth,“Silk Road People-to-People Connectivity”Care for the Future Activity and a donation ceremony of school sports goods were held at China-Myanmar Friendship School,Basic Education High School(BEHS)No.14,in Nay Pyi Taw,Myanmar.
基金Supported by the National Science Foundation of China under Grant Nos 60904065,71031007 and 71101013the Program for New Century Excellent Talents in University under Grant No NCET-12-0141.
文摘Natural connectivity has been recently proposed to efficiently characterize the structural robustness of complex networks.The natural connectivity,interpreted as the Helmholtz free energy of a network,can be derived from the graph spectrum.We extend the concept of natural connectivity to weighted complex networks,in which the weight represents the number of multiple edges.We prove that the weighted natural connectivity changes monotonically when the weights are increased or decreased.We investigate the influence of weight on the network robustness within scenarios of weight changing and show that the weighted natural connectivity allows a precise quantitative analysis of the structural robustness for weighted complex networks.