期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于U⁃net卷积神经网络的多尺度遥感图像分割算法 被引量:2
1
作者 刘丹英 刘晓燕 《现代电子技术》 2023年第21期44-47,共4页
多尺度遥感图像的非本质特征量较大,不仅易导致图像噪声较大,也增加了图像分割的难度。为充分保留分割后多尺度遥感图像的边缘特征,在U⁃net卷积神经网络下提出新的图像分割算法。以U⁃net卷积神经网络为基网,提取被分割图像特征,获得被... 多尺度遥感图像的非本质特征量较大,不仅易导致图像噪声较大,也增加了图像分割的难度。为充分保留分割后多尺度遥感图像的边缘特征,在U⁃net卷积神经网络下提出新的图像分割算法。以U⁃net卷积神经网络为基网,提取被分割图像特征,获得被分割图像细节信息;计算相邻像素和原始像素特征向量的欧氏距离,结合去噪算法,通过归一化参数处理,建立相似性函数,实现对多尺度遥感图像分割特征增强处理;计算分割框候选偏差值;根据U⁃net卷积神经网络结构确定局部最优合并区域对;计算度量区域的距离,使用全局最优区域合并方法更新分割时间复杂度,实现多尺度遥感图像整体分割。由实验结果可知,该算法能够精准确定指定建筑物位置,并保留建筑物完整边缘细节信息。 展开更多
关键词 U⁃net卷积神经网络 特征提取 相邻像素 相似性函数 分割框候选偏差 多尺度 遥感图像 分割
下载PDF
基于改进卷积神经网络的车型识别 被引量:9
2
作者 陈立潮 卜楠 +2 位作者 潘理虎 曹建芳 张英俊 《计算机工程与设计》 北大核心 2019年第11期3331-3336,3348,共7页
为解决传统车型识别方法提取特征信息单一、识别精度不高、效率低的问题,将卷积神经网络引入目标识别问题中,利用其清晰、高效的泛化能力完成车型的特征学习,围绕模型的框架结构设计和内部参数优化两个方面进行研究,提出一种基于改进的A... 为解决传统车型识别方法提取特征信息单一、识别精度不高、效率低的问题,将卷积神经网络引入目标识别问题中,利用其清晰、高效的泛化能力完成车型的特征学习,围绕模型的框架结构设计和内部参数优化两个方面进行研究,提出一种基于改进的Alex Net网络模型。将循环神经网络与卷积神经网络融合嵌入二级框架,设计自定义池化方式并对参数更新过程方法进行合理组合,通过提取浅层和高层的组合特征保证训练过程输入信息的多样性,使特征表达更加精确,网络性能更加高效。将该模型应用于视频监控图像车型识别任务中,通过在BIT-vehicle数据集上的一系列对比实验验证了所提模型的有效性。 展开更多
关键词 车型识别 Alex net卷积神经网络 循环神经网络 特征融合 池化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部