A number of Fe-Si-B amorphous ribbons are made by using melt spinning method. The microstructure, mechanical and other relevant properties of thin amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloy at room...A number of Fe-Si-B amorphous ribbons are made by using melt spinning method. The microstructure, mechanical and other relevant properties of thin amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloy at room temperature were studied with several equipment including Differential scanning calorimetry (DSC), X-ray diffraction (XRD),Scanning electron microscope (SEM), and tensile machine. Significantly different microstructures exist between the free and wheel face of the thin amorphous ribbons. The free face is smooth while the wheel face is coarse with a great number of micro voids on the surface. Experimental results show that the tensile strength and elastic modulus of thethin amorphous ribbons at room temperature are 1951 MPa and 70 GPa. In addition, the amorphous ribbons possess reasonable tensile elongation (2.46%). The fracture appearance of amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloyis a mixed mode of ductile and brittle fracture which includes dimples and partial cleavage fracture similar to the crystalline materials. The dimple feature proves that it still has plastic characteristics on the micro scale.展开更多
基金Sponsored by the National Science Foundation of Anhui Province(Grant Nos.1508085ME84 and KJ2016A146)
文摘A number of Fe-Si-B amorphous ribbons are made by using melt spinning method. The microstructure, mechanical and other relevant properties of thin amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloy at room temperature were studied with several equipment including Differential scanning calorimetry (DSC), X-ray diffraction (XRD),Scanning electron microscope (SEM), and tensile machine. Significantly different microstructures exist between the free and wheel face of the thin amorphous ribbons. The free face is smooth while the wheel face is coarse with a great number of micro voids on the surface. Experimental results show that the tensile strength and elastic modulus of thethin amorphous ribbons at room temperature are 1951 MPa and 70 GPa. In addition, the amorphous ribbons possess reasonable tensile elongation (2.46%). The fracture appearance of amorphous ribbons of Fe81.50B1.40Si7.95Nb7.37Cu1.73P0.05 alloyis a mixed mode of ductile and brittle fracture which includes dimples and partial cleavage fracture similar to the crystalline materials. The dimple feature proves that it still has plastic characteristics on the micro scale.