A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimizati...A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimization cases for a certain chemical plant are obtained off-line byusing PROCESS-Ⅱ or other flowsheeting programming with optimization.Then,taking these cases astraining examples,we establish a neural network systems which can be used on-line as an optimizer toobtain setpoints from input data sampled from distributed control system through gross error detectionand data reconciliation procedures.Such an on-line optimizer possesses two advantages over nonlinearprogramming package:first of all,there is no convergence problem for the trained ANN to be usedonline;secondly,the frequency for setpoints updating is not limited because only algebraic calculationrather than optimization is required to be carried out on-line.Here two key problems ofimplementing ANN approaches to the on-line optimization展开更多
The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different W...The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.展开更多
A flat neural network is designed for the on line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a parti...A flat neural network is designed for the on line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a partition matrix. Furthermore, the forgetting factor approach is introduced to improve predictive accuracy and robustness of the model. The experiment results indicate that the improved neural network is of good accuracy and strong robustness in prediction, and can apply for the on line prediction of nonlinear multi input multi output systems like vehicle engines.展开更多
The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time consta...The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented.展开更多
Approaches to machine intelligence based on brain models use neural networks for generalization but they do so as signal processing black boxes. In reality, the brain consists of many modules that operate in parallel ...Approaches to machine intelligence based on brain models use neural networks for generalization but they do so as signal processing black boxes. In reality, the brain consists of many modules that operate in parallel at different levels. In this paper we propose a more realistic biologically inspired hybrid neural network architecture that uses two kinds of neural networks simultaneously to consider short-term and long-term characteristics of the signal. The first of these networks quickly adapts to new modes of operation whereas the second one provides more accurate learning within a specific mode. We call these networks the surfacing and deep learning agents and show that this hybrid architecture performs complementary functions that improve the overall learning. The performance of the hybrid architecture has been compared with that of back-propagation perceptrons and the CC and FC networks for chaotic time-series prediction, the CATS benchmark test, and smooth function approximation. It is shown that the proposed architecture provides a superior performance based on the RMS error criterion.展开更多
In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
Several industrial computers and a server are combined to set up the on-line monitoring and diagnostic system of turbo-generator sets. The main function of the system is to monitor machine sets' running condition....Several industrial computers and a server are combined to set up the on-line monitoring and diagnostic system of turbo-generator sets. The main function of the system is to monitor machine sets' running condition. Through analyzing running data, technicians can detect whether there exist faults and where they occur. To share and transmit the dynamic information of the turbo-generator sets, a distributed network system is introduced. NetWare network operating system is used in the LAN (Local Area Network) system. The LAN is extended to realize the sharing of data and remote transmission of information. Furthermore, functions of monitoring and diagnostic clients are listed.展开更多
When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristi...When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent.展开更多
基金Supported by the National Nature Science Foundation of China,the Research Foundation of General Corporation of China Petro-Chemical Industry and the Natural Science and Engineering Research Council of Canada.
文摘A strategy of developing on-line optimization intelligent systems based on combiningflowsheeting simulation and optimization package with artificial neural networks(ANN)is presented inthis paper.A number of optimization cases for a certain chemical plant are obtained off-line byusing PROCESS-Ⅱ or other flowsheeting programming with optimization.Then,taking these cases astraining examples,we establish a neural network systems which can be used on-line as an optimizer toobtain setpoints from input data sampled from distributed control system through gross error detectionand data reconciliation procedures.Such an on-line optimizer possesses two advantages over nonlinearprogramming package:first of all,there is no convergence problem for the trained ANN to be usedonline;secondly,the frequency for setpoints updating is not limited because only algebraic calculationrather than optimization is required to be carried out on-line.Here two key problems ofimplementing ANN approaches to the on-line optimization
文摘The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.
文摘A flat neural network is designed for the on line state prediction of engine. To reduce the computational cost of weight matrix, a fast recursive algorithm is derived according to the pseudoinverse formula of a partition matrix. Furthermore, the forgetting factor approach is introduced to improve predictive accuracy and robustness of the model. The experiment results indicate that the improved neural network is of good accuracy and strong robustness in prediction, and can apply for the on line prediction of nonlinear multi input multi output systems like vehicle engines.
文摘The theory of RC uniform ladder networks based upon the recurrence of voltage and cur-rent functions is extended as a vehicle to analyse the dynamic characteristics of reg lines. Meth-ods for computing the time constants and simplifying the transfer functions for reg lines are alsopresented.
文摘Approaches to machine intelligence based on brain models use neural networks for generalization but they do so as signal processing black boxes. In reality, the brain consists of many modules that operate in parallel at different levels. In this paper we propose a more realistic biologically inspired hybrid neural network architecture that uses two kinds of neural networks simultaneously to consider short-term and long-term characteristics of the signal. The first of these networks quickly adapts to new modes of operation whereas the second one provides more accurate learning within a specific mode. We call these networks the surfacing and deep learning agents and show that this hybrid architecture performs complementary functions that improve the overall learning. The performance of the hybrid architecture has been compared with that of back-propagation perceptrons and the CC and FC networks for chaotic time-series prediction, the CATS benchmark test, and smooth function approximation. It is shown that the proposed architecture provides a superior performance based on the RMS error criterion.
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘Several industrial computers and a server are combined to set up the on-line monitoring and diagnostic system of turbo-generator sets. The main function of the system is to monitor machine sets' running condition. Through analyzing running data, technicians can detect whether there exist faults and where they occur. To share and transmit the dynamic information of the turbo-generator sets, a distributed network system is introduced. NetWare network operating system is used in the LAN (Local Area Network) system. The LAN is extended to realize the sharing of data and remote transmission of information. Furthermore, functions of monitoring and diagnostic clients are listed.
文摘When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent.