Deploying Picocell Base Station(PBS) throughout a Macrocell is a promising solution for capacity improvement in the next generation wireless networks.However,the strong received power from Macrocell Base Station(MBS) ...Deploying Picocell Base Station(PBS) throughout a Macrocell is a promising solution for capacity improvement in the next generation wireless networks.However,the strong received power from Macrocell Base Station(MBS) makes the areas of Picocell narrow and limits the gain of cell splitting.In this paper,we firstly propose a Dynamic Cell Range Expansion(DCRE) strategy.By expanding the coverage of the cell,we aim to balance the network load between MBS and PBS.Then,we present a cooperative Resource block and Power Allocation Scheme(coRPAS)based on DCRE.The objective of coRPAS is to decrease interference caused by MBS and Macrocell User Equipments,by which we can expand regions of Picocell User Equipments.Simulation results demonstrate the superiority of our method through comparing with other existing methods.展开更多
The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic developm...The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic development.This study provides valuable insights into optimizing wireless communication,paving the way for a more connected and productive future in the mining industry.The IoT revolution is advancing across industries,but harsh geometric environments,including open-pit mines,pose unique challenges for reliable communication.The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency(RF)protocols such as Bluetooth,Wi-Fi,GSM/GPRS,Narrow Band(NB)-IoT,SigFox,ZigBee,and Long Range Wireless Area Network(LoRaWAN).This study addresses the optimization of network implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.ZigBee is tested in the Tadicherla open-cast coal mine in India.Similarly,LoRaWAN field tests are conducted at one of the associated cement companies(ACC)in the limestone mine in Bargarh,India,covering both Indoor-toOutdoor(I2O)and Outdoor-to-Outdoor(O2O)environments.A robust framework of path-loss models,referred to as Free space,Egli,Okumura-Hata,Cost231-Hata and Ericsson models,combined with key performance metrics,is employed to evaluate the patterns of signal attenuation.Extensive field testing and careful data analysis revealed that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment,with a coefficient of determination(R^(2))of 0.907,balanced error metrics such as Normalized Root Mean Square Error(NRMSE)of 0.030,Mean Square Error(MSE)of 4.950,Mean Absolute Percentage Error(MAPE)of 0.249 and Scatter Index(SI)of 2.723.In the O2O scenario,the Ericsson model showed superior performance,with the highest R^(2)value of 0.959,supported by strong correlation metrics:NRMSE of 0.026,MSE of 8.685,MAPE of 0.685,Mean Absolute Deviation(MAD)of 20.839 and SI of 2.194.For the LoRaWAN protocol,the Cost-231 model achieved the highest R^(2)value of 0.921 in the I2O scenario,complemented by the lowest metrics:NRMSE of 0.018,MSE of 1.324,MAPE of 0.217,MAD of 9.218 and SI of 1.238.In the O2O environment,the Okumura-Hata model achieved the highest R^(2)value of 0.978,indicating a strong fit with metrics NRMSE of 0.047,MSE of 27.807,MAPE of 27.494,MAD of 37.287 and SI of 3.927.This advancement in reliable communication networks promises to transform the opencast landscape into networked signal attenuation.These results support decision-making for mining needs and ensure reliable communications even in the face of formidable obstacles.展开更多
The Kunlunshan Mountain Ms8.1 earthquake, occurred in Nov.14, 2001, is the first event with magnitude more than 8 in the China earthquake monitoring history, specifically at the beginning of digital techniques in prec...The Kunlunshan Mountain Ms8.1 earthquake, occurred in Nov.14, 2001, is the first event with magnitude more than 8 in the China earthquake monitoring history, specifically at the beginning of digital techniques in precursor monitoring networks. Any investigation of recorded data on this earthquake is very important for testing the operation of the digital monitoring networks and understanding the preparation, occurrence, and adjustment of stress/strain of strong continental earthquakes. In this paper we investigated the coseismic response changes of well water level of groundwater and volume strain meter of bore hole in digital earthquake monitoring network of Capital area and its vicinity, due to the Nov.14, 2001 Ms8.1 Kunlun Mountain earthquake. The responding time, shapes or manners, amplitudes, and lasting time of well water level and strain-meters to seismic wave are studied in comparison. Then we discussed the possibility that the response changes of groundwater to strong distant earthquakes can be understood as one kind of observing evidence of stress/strain changes induced by distant earthquake.展开更多
基金supported in part by the National Natural Science Foundation of China(61172051,61302070,61202071, 61302072) the Fundamental Research Funds for the Central Universities (N110804003,N120804002,N120404001, N120604001)+1 种基金 the Program for New Century Excellent Talents in University(NCET-120102) the Specialized Research Fund for the Doctoral Program of Higher Education (20120042120049)
文摘Deploying Picocell Base Station(PBS) throughout a Macrocell is a promising solution for capacity improvement in the next generation wireless networks.However,the strong received power from Macrocell Base Station(MBS) makes the areas of Picocell narrow and limits the gain of cell splitting.In this paper,we firstly propose a Dynamic Cell Range Expansion(DCRE) strategy.By expanding the coverage of the cell,we aim to balance the network load between MBS and PBS.Then,we present a cooperative Resource block and Power Allocation Scheme(coRPAS)based on DCRE.The objective of coRPAS is to decrease interference caused by MBS and Macrocell User Equipments,by which we can expand regions of Picocell User Equipments.Simulation results demonstrate the superiority of our method through comparing with other existing methods.
文摘The Internet of Things(IoT)has orchestrated various domains in numerous applications,contributing significantly to the growth of the smart world,even in regions with low literacy rates,boosting socio-economic development.This study provides valuable insights into optimizing wireless communication,paving the way for a more connected and productive future in the mining industry.The IoT revolution is advancing across industries,but harsh geometric environments,including open-pit mines,pose unique challenges for reliable communication.The advent of IoT in the mining industry has significantly improved communication for critical operations through the use of Radio Frequency(RF)protocols such as Bluetooth,Wi-Fi,GSM/GPRS,Narrow Band(NB)-IoT,SigFox,ZigBee,and Long Range Wireless Area Network(LoRaWAN).This study addresses the optimization of network implementations by comparing two leading free-spreading IoT-based RF protocols such as ZigBee and LoRaWAN.Intensive field tests are conducted in various opencast mines to investigate coverage potential and signal attenuation.ZigBee is tested in the Tadicherla open-cast coal mine in India.Similarly,LoRaWAN field tests are conducted at one of the associated cement companies(ACC)in the limestone mine in Bargarh,India,covering both Indoor-toOutdoor(I2O)and Outdoor-to-Outdoor(O2O)environments.A robust framework of path-loss models,referred to as Free space,Egli,Okumura-Hata,Cost231-Hata and Ericsson models,combined with key performance metrics,is employed to evaluate the patterns of signal attenuation.Extensive field testing and careful data analysis revealed that the Egli model is the most consistent path-loss model for the ZigBee protocol in an I2O environment,with a coefficient of determination(R^(2))of 0.907,balanced error metrics such as Normalized Root Mean Square Error(NRMSE)of 0.030,Mean Square Error(MSE)of 4.950,Mean Absolute Percentage Error(MAPE)of 0.249 and Scatter Index(SI)of 2.723.In the O2O scenario,the Ericsson model showed superior performance,with the highest R^(2)value of 0.959,supported by strong correlation metrics:NRMSE of 0.026,MSE of 8.685,MAPE of 0.685,Mean Absolute Deviation(MAD)of 20.839 and SI of 2.194.For the LoRaWAN protocol,the Cost-231 model achieved the highest R^(2)value of 0.921 in the I2O scenario,complemented by the lowest metrics:NRMSE of 0.018,MSE of 1.324,MAPE of 0.217,MAD of 9.218 and SI of 1.238.In the O2O environment,the Okumura-Hata model achieved the highest R^(2)value of 0.978,indicating a strong fit with metrics NRMSE of 0.047,MSE of 27.807,MAPE of 27.494,MAD of 37.287 and SI of 3.927.This advancement in reliable communication networks promises to transform the opencast landscape into networked signal attenuation.These results support decision-making for mining needs and ensure reliable communications even in the face of formidable obstacles.
基金supported by Natural Science Foundation of China(41274061 and 40374019)
文摘The Kunlunshan Mountain Ms8.1 earthquake, occurred in Nov.14, 2001, is the first event with magnitude more than 8 in the China earthquake monitoring history, specifically at the beginning of digital techniques in precursor monitoring networks. Any investigation of recorded data on this earthquake is very important for testing the operation of the digital monitoring networks and understanding the preparation, occurrence, and adjustment of stress/strain of strong continental earthquakes. In this paper we investigated the coseismic response changes of well water level of groundwater and volume strain meter of bore hole in digital earthquake monitoring network of Capital area and its vicinity, due to the Nov.14, 2001 Ms8.1 Kunlun Mountain earthquake. The responding time, shapes or manners, amplitudes, and lasting time of well water level and strain-meters to seismic wave are studied in comparison. Then we discussed the possibility that the response changes of groundwater to strong distant earthquakes can be understood as one kind of observing evidence of stress/strain changes induced by distant earthquake.