In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology o...In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.展开更多
Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)...Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field.展开更多
Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the ...Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance.展开更多
Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs...Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.展开更多
Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impa...Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.展开更多
In today’s world, computer networks form an essential part of any organization. They are used not only to communicate information amongst the various parties involved but also to process data and store critical infor...In today’s world, computer networks form an essential part of any organization. They are used not only to communicate information amongst the various parties involved but also to process data and store critical information which is accessible to approved subscribers. Protecting critical data, ensuring confidentiality, and thwarting illegal access are primary concerns for such organizations. This case study presents security recommendations for any such organization, to assist them in defining security policies at various levels of the network infrastructure.展开更多
在信息技术飞速发展的今天,企业网络安全防护技术研究和应用已成为信息安全领域中的一个中心课题。本研究首先简要描述了网络安全防护技术的各种分类和局限性,然后深入分析了网络入侵检测、数据加密和访问控制,以及安全信息与事件管理(S...在信息技术飞速发展的今天,企业网络安全防护技术研究和应用已成为信息安全领域中的一个中心课题。本研究首先简要描述了网络安全防护技术的各种分类和局限性,然后深入分析了网络入侵检测、数据加密和访问控制,以及安全信息与事件管理(Security Information and Event Managemen,SIEM)技术的最新研究进展。随后,对防火墙和入侵防御系统、虚拟私人网络和远程访问技术以及SIEM在现代企业的具体应用进行了详细描述。本文在深入分析上述技术及具体案例的基础上,致力于为企业提供更完善、更有效的网络安全解决方案。展开更多
基金supported by National Nature Science Foundation of China (Grant No.61471182)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_2993)Jiangsu postgraduate research innovation project (SJCX18_0784)。
文摘In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.
基金supported by King Khalid University,Saudi Arabia underGrant No.RGP.2/61/43.
文摘Software-Defined Networking(SDN)enables flexibility in developing security tools that can effectively and efficiently analyze and detect malicious network traffic for detecting intrusions.Recently Machine Learning(ML)techniques have attracted lots of attention from researchers and industry for developing intrusion detection systems(IDSs)considering logically centralized control and global view of the network provided by SDN.Many IDSs have developed using advances in machine learning and deep learning.This study presents a comprehensive review of recent work ofML-based IDS in context to SDN.It presents a comprehensive study of the existing review papers in the field.It is followed by introducing intrusion detection,ML techniques and their types.Specifically,we present a systematic study of recent works,discuss ongoing research challenges for effective implementation of ML-based intrusion detection in SDN,and promising future works in this field.
基金supported in part by the 2021 Autonomous Driving Development Innovation Project of the Ministry of Science and ICT,‘Development of Technology for Security and Ultra-High-Speed Integrity of the Next-Generation Internal Net-Work of Autonomous Vehicles’(No.2021-0-01348)and in part by the National Research Foundation of Korea(NRF)grant funded by the Korean Government Ministry of Science and ICT(MSIT)under Grant NRF-2021R1A2C2014428.
文摘Recently,automotive intrusion detection systems(IDSs)have emerged as promising defense approaches to counter attacks on in-vehicle networks(IVNs).However,the effectiveness of IDSs relies heavily on the quality of the datasets used for training and evaluation.Despite the availability of several datasets for automotive IDSs,there has been a lack of comprehensive analysis focusing on assessing these datasets.This paper aims to address the need for dataset assessment in the context of automotive IDSs.It proposes qualitative and quantitative metrics that are independent of specific automotive IDSs,to evaluate the quality of datasets.These metrics take into consideration various aspects such as dataset description,collection environment,and attack complexity.This paper evaluates eight commonly used datasets for automotive IDSs using the proposed metrics.The evaluation reveals biases in the datasets,particularly in terms of limited contexts and lack of diversity.Additionally,it highlights that the attacks in the datasets were mostly injected without considering normal behaviors,which poses challenges for training and evaluating machine learning-based IDSs.This paper emphasizes the importance of addressing the identified limitations in existing datasets to improve the performance and adaptability of automotive IDSs.The proposed metrics can serve as valuable guidelines for researchers and practitioners in selecting and constructing high-quality datasets for automotive security applications.Finally,this paper presents the requirements for high-quality datasets,including the need for representativeness,diversity,and balance.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.NRF-2021R1A4A1029650).
文摘Modern vehicles are equipped with multiple Electronic Control Units(ECUs)that support various convenient driving functions,such as the Advanced Driver Assistance System(ADAS).To enable communication between these ECUs,the Controller Area Network(CAN)protocol is widely used.However,since CAN lacks any security technologies,it is vulnerable to cyber attacks.To address this,researchers have conducted studies on machine learning-based intrusion detection systems(IDSs)for CAN.However,most existing IDSs still have non-negligible detection errors.In this paper,we pro-pose a new filtering-based intrusion detection system(FIDS)to minimize the detection errors of machine learning-based IDSs.FIDS uses a whitelist and a blacklist created from CAN datasets.The whitelist stores the cryptographic hash value of normal packet sequences to correct false positives(FP),while the blacklist corrects false negatives(FN)based on transmission intervals and identifiers of CAN packets.We evaluated the performance of the proposed FIDS by implementing a machine learning-based IDS and applying FIDS to it.We conducted the evaluation using two CAN attack datasets provided by the Hacking and Countermeasure Research Lab(HCRL),which confirmed that FIDS can effectively reduce the FP and FN of the existing IDS.
文摘Secure authentication and accurate localization among Internet of Things(IoT)sensors are pivotal for the functionality and integrity of IoT networks.IoT authentication and localization are intricate and symbiotic,impacting both the security and operational functionality of IoT systems.Hence,accurate localization and lightweight authentication on resource-constrained IoT devices pose several challenges.To overcome these challenges,recent approaches have used encryption techniques with well-known key infrastructures.However,these methods are inefficient due to the increasing number of data breaches in their localization approaches.This proposed research efficiently integrates authentication and localization processes in such a way that they complement each other without compromising on security or accuracy.The proposed framework aims to detect active attacks within IoT networks,precisely localize malicious IoT devices participating in these attacks,and establish dynamic implicit authentication mechanisms.This integrated framework proposes a Correlation Composition Awareness(CCA)model,which explores innovative approaches to device correlations,enhancing the accuracy of attack detection and localization.Additionally,this framework introduces the Pair Collaborative Localization(PCL)technique,facilitating precise identification of the exact locations of malicious IoT devices.To address device authentication,a Behavior and Performance Measurement(BPM)scheme is developed,ensuring that only trusted devices gain access to the network.This work has been evaluated across various environments and compared against existing models.The results prove that the proposed methodology attains 96%attack detection accuracy,84%localization accuracy,and 98%device authentication accuracy.
文摘In today’s world, computer networks form an essential part of any organization. They are used not only to communicate information amongst the various parties involved but also to process data and store critical information which is accessible to approved subscribers. Protecting critical data, ensuring confidentiality, and thwarting illegal access are primary concerns for such organizations. This case study presents security recommendations for any such organization, to assist them in defining security policies at various levels of the network infrastructure.
文摘在信息技术飞速发展的今天,企业网络安全防护技术研究和应用已成为信息安全领域中的一个中心课题。本研究首先简要描述了网络安全防护技术的各种分类和局限性,然后深入分析了网络入侵检测、数据加密和访问控制,以及安全信息与事件管理(Security Information and Event Managemen,SIEM)技术的最新研究进展。随后,对防火墙和入侵防御系统、虚拟私人网络和远程访问技术以及SIEM在现代企业的具体应用进行了详细描述。本文在深入分析上述技术及具体案例的基础上,致力于为企业提供更完善、更有效的网络安全解决方案。