期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
1
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability NEUROGENESIS neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
下载PDF
Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization
2
作者 Ahmad Yahiya Ahmad Bani Ahmad Jafar Alzubi +3 位作者 Sophers James Vincent Omollo Nyangaresi Chanthirasekaran Kutralakani Anguraju Krishnan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4791-4812,共22页
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e... In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach. 展开更多
关键词 Human action recognition multi-modal sensor data and signals adaptive hybrid deep attentive network enhanced archerfish hunting optimizer 1D convolutional neural network gated recurrent units
下载PDF
Approximate dynamic programming solutions with a single network adaptive critic for a class of nonlinear systems 被引量:2
3
作者 S.N.BALAKRISHNAN 《控制理论与应用(英文版)》 EI 2011年第3期370-380,共11页
Approximate dynamic programming(ADP) formulation implemented with an adaptive critic(AC)-based neural network(NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman(HJB) equations.As... Approximate dynamic programming(ADP) formulation implemented with an adaptive critic(AC)-based neural network(NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman(HJB) equations.As interest in ADP and the AC solutions are escalating with time,there is a dire need to consider possible enabling factors for their implementations.A typical AC structure consists of two interacting NNs,which is computationally expensive.In this paper,a new architecture,called the ’cost-function-based single network adaptive critic(J-SNAC)’ is presented,which eliminates one of the networks in a typical AC structure.This approach is applicable to a wide class of nonlinear systems in engineering.In order to demonstrate the benefits and the control synthesis with the J-SNAC,two problems have been solved with the AC and the J-SNAC approaches.Results are presented,which show savings of about 50% of the computational costs by J-SNAC while having the same accuracy levels of the dual network structure in solving for optimal control.Furthermore,convergence of the J-SNAC iterations,which reduces to a least-squares problem,is discussed;for linear systems,the iterative process is shown to reduce to solving the familiar algebraic Ricatti equation. 展开更多
关键词 Approximate dynamic programming Optimal control Nonlinear control adaptive critic Cost-functionbased single network adaptive critic J-SNAC architecture
原文传递
Epidemic propagation on adaptive coevolutionary networks with preferential local-world reconnecting strategy 被引量:2
4
作者 宋玉蓉 蒋国平 巩永旺 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第4期63-69,共7页
In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local lin... In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively. 展开更多
关键词 adaptive networks epidemic dynamics network dynamics cellular automata local-world reconnecting mechanism
下载PDF
Adaptive Air-Fuel Ratio Control with MLP Network 被引量:3
5
作者 Shi-Wei Wang Ding-Li Yu 《International Journal of Automation and computing》 EI 2005年第2期125-133,共9页
This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-l... This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS. 展开更多
关键词 Air-fuel ratio control IC engine adaptive neural networks nonlinear programming model predictive control
下载PDF
Design and Implementation of an Adaptive Feedback Queue Algorithm over Open Flow Networks 被引量:5
6
作者 Jiawei Wu Xiuquan Qiao Junliang Chen 《China Communications》 SCIE CSCD 2018年第7期168-179,共12页
The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Rec... The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Recently, several proposals for fulfilling the quality of service(QoS) guarantees have been presented. However, they can only support coarse-grained QoS with no guarantee of throughput, jitter, delay or loss rate for different applications. To address these more challenging problems, an adaptive scheduling algorithm for Parallel data Processing with Multiple Feedback(PPMF) queues based on software defined networks(SDN) is proposed in this paper, which can guarantee the quality of service of high priority traffic in multimedia applications. PPMF combines the queue bandwidth feedback mechanism to realise the automatic adjustment of the queue bandwidth according to the priority of the packet and network conditions, which can effectively solve the problem of network congestion that has been experienced by some queues for a long time. Experimental results show PPMF significantly outperforms other existing scheduling approaches in achieving 35--80% improvement on average time delay by adjusting the bandwidth adaptively, thus ensuring the transmission quality of the specified traffic and avoiding effectively network congestion. 展开更多
关键词 multimedia streams software defined networks quality of service priority-based adaptive feedback queues
下载PDF
Improved Adaptive Random Convolutional Network Coding Algorithm 被引量:2
7
作者 Guo Wangmei Cai Ning Wang Xiao 《China Communications》 SCIE CSCD 2012年第11期63-69,共7页
To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation o... To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm. 展开更多
关键词 convolutional network coding adaptive network coding algorithm random coding
下载PDF
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
8
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 Nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network(ERBPNN)and Fast Adaptive Neural Network Classifier(FANNC) 被引量:1
9
作者 Yushen Kong Micheal Owusu-Akomeah +2 位作者 Henry Asante Antwi Xuhua Hu Patrick Acheampong 《Financial Innovation》 2019年第1期167-178,共12页
Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The t... Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates. 展开更多
关键词 Mutual fund performance Artificial Neural network Fast adaptive Neural network Classifier
下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
10
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
下载PDF
Information diffusion on adaptive network
11
作者 胡柯 唐翌 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第10期3536-3541,共6页
Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can dri... Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology. 展开更多
关键词 adaptive network information diffusion degree correlation hierarchical clustering
下载PDF
Adaptive co-evolution of strategies and network leading to optimal cooperation level in spatial prisoner's dilemma game
12
作者 陈含爽 侯中怀 +1 位作者 张季谦 辛厚文 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第5期25-30,共6页
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategie... We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve. 展开更多
关键词 prisoner's dilemma game adaptive network CO-EVOLUTION COOPERATION
下载PDF
Neural Network Based Adaptive Tracking of Nonlinear Multi-Agent System
13
作者 Bo-Xian Lin Wei-Hao Li +1 位作者 Kai-Yu Qin Xi Chen 《Journal of Electronic Science and Technology》 CAS CSCD 2021年第2期144-154,共11页
In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is propose... In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster. 展开更多
关键词 Coordinated tracking leader following consensus neural network based adaptive control robust control uncertain nonlinear system
下载PDF
CLASSIFICATIONS OF EEG SIGNALS FOR MENTAL TASKS USING ADAPTIVE RBF NETWORK
14
作者 薛建中 郑崇勋 闫相国 《Journal of Pharmaceutical Analysis》 SCIE CAS 2004年第2期97-100,109,共5页
Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s che... Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s chemes. Methods Initial centers and widths of the network are s elected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during train ing phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three t ask pairs over four subjects achieves 87.0%. Moreover, this network runs fast du e to the fewer hidden layer neurons. Conclusion The adaptive RB F network with optimal centers and widths has high recognition rate and runs fas t. It may be a promising classifier for on-line BCI scheme. 展开更多
关键词 adaptive RBF network EEG mental task
下载PDF
Fetal ECG Extraction Based on Adaptive Linear Neural Network 被引量:1
15
作者 JIA Wen-juan YANG Chun-lan ZHONG Guo-cheng ZHOU Meng-ying WU Shui-cai 《Chinese Journal of Biomedical Engineering(English Edition)》 2011年第2期75-82,共8页
Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quanti... Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quantity of data.In addition,a better result can be achieved by improving neural network structure.Thus,more easily identified fetal ECG can be extracted.Experimental results show that the adaptive linear neural network can be used to extract fetal ECG from maternal abdominal signal effectively.What's more,a clearer fetal ECG can be extracted by improving neural network structure. 展开更多
关键词 fetal ECG adaptive linear neural network W-H learning rule
下载PDF
Adaptive Graph Convolutional Recurrent Neural Networks for System-Level Mobile Traffic Forecasting
16
作者 Yi Zhang Min Zhang +4 位作者 Yihan Gui Yu Wang Hong Zhu Wenbin Chen Danshi Wang 《China Communications》 SCIE CSCD 2023年第10期200-211,共12页
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ... Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches. 展开更多
关键词 adaptive graph convolutional network mobile traffic prediction spatial-temporal dependence
下载PDF
Development of an electrode intelligent design system based on adaptive fuzzy neural network and genetic algorithm
17
作者 Huang Jun Xu Yuelan +1 位作者 Wang Luyuan Wang Kehong 《China Welding》 EI CAS 2014年第2期62-66,共5页
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie... The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files. 展开更多
关键词 electrode design system adaptive fuzzy neural network genetic algorithm object linking and embedding
下载PDF
Position detection of BLDC rotor based on adaptive wavelet neural network
18
作者 李永红 陈家斌 +1 位作者 赵圣飞 岳凤英 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期26-30,共5页
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ... Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability. 展开更多
关键词 Brushless DC(BLDC) adaptive wavelet neural network differential evolution(DE)algorithm
下载PDF
Flexible,thermal processable,self-healing,and fully bio-based starch plastics by constructing dynamic imine network
19
作者 Xiaoqian Zhang Haishan Zhang +2 位作者 Guowen Zhou Zhiping Su Xiaohui Wang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第10期1610-1618,共9页
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ... The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics. 展开更多
关键词 Bioplastic Covalent adaptable networks Schiff base chemistry Thermal processability SELF-HEALING
下载PDF
Hierarchical structured robust adaptive attitude controller design for reusable launch vehicles 被引量:1
20
作者 Guangxue Yu Huifeng Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第4期813-825,共13页
Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV i... Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC. 展开更多
关键词 reusable launch vehicle (RLV) REENTRY hierarchicalstructured H∞ optimization neutral network adaptive (NNA) atti-tude control.
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部