Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh...Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.展开更多
In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the e...In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.展开更多
Approximate dynamic programming(ADP) formulation implemented with an adaptive critic(AC)-based neural network(NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman(HJB) equations.As...Approximate dynamic programming(ADP) formulation implemented with an adaptive critic(AC)-based neural network(NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman(HJB) equations.As interest in ADP and the AC solutions are escalating with time,there is a dire need to consider possible enabling factors for their implementations.A typical AC structure consists of two interacting NNs,which is computationally expensive.In this paper,a new architecture,called the ’cost-function-based single network adaptive critic(J-SNAC)’ is presented,which eliminates one of the networks in a typical AC structure.This approach is applicable to a wide class of nonlinear systems in engineering.In order to demonstrate the benefits and the control synthesis with the J-SNAC,two problems have been solved with the AC and the J-SNAC approaches.Results are presented,which show savings of about 50% of the computational costs by J-SNAC while having the same accuracy levels of the dual network structure in solving for optimal control.Furthermore,convergence of the J-SNAC iterations,which reduces to a least-squares problem,is discussed;for linear systems,the iterative process is shown to reduce to solving the familiar algebraic Ricatti equation.展开更多
In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local lin...In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively.展开更多
This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-l...This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.展开更多
The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Rec...The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Recently, several proposals for fulfilling the quality of service(QoS) guarantees have been presented. However, they can only support coarse-grained QoS with no guarantee of throughput, jitter, delay or loss rate for different applications. To address these more challenging problems, an adaptive scheduling algorithm for Parallel data Processing with Multiple Feedback(PPMF) queues based on software defined networks(SDN) is proposed in this paper, which can guarantee the quality of service of high priority traffic in multimedia applications. PPMF combines the queue bandwidth feedback mechanism to realise the automatic adjustment of the queue bandwidth according to the priority of the packet and network conditions, which can effectively solve the problem of network congestion that has been experienced by some queues for a long time. Experimental results show PPMF significantly outperforms other existing scheduling approaches in achieving 35--80% improvement on average time delay by adjusting the bandwidth adaptively, thus ensuring the transmission quality of the specified traffic and avoiding effectively network congestion.展开更多
To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation o...To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.展开更多
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ...In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.展开更多
Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The t...Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates.展开更多
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi...To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.展开更多
Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can dri...Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology.展开更多
We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategie...We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.展开更多
In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is propose...In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.展开更多
Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s che...Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s chemes. Methods Initial centers and widths of the network are s elected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during train ing phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three t ask pairs over four subjects achieves 87.0%. Moreover, this network runs fast du e to the fewer hidden layer neurons. Conclusion The adaptive RB F network with optimal centers and widths has high recognition rate and runs fas t. It may be a promising classifier for on-line BCI scheme.展开更多
Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quanti...Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quantity of data.In addition,a better result can be achieved by improving neural network structure.Thus,more easily identified fetal ECG can be extracted.Experimental results show that the adaptive linear neural network can be used to extract fetal ECG from maternal abdominal signal effectively.What's more,a clearer fetal ECG can be extracted by improving neural network structure.展开更多
Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges ...Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.展开更多
The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical propertie...The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files.展开更多
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ...Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.展开更多
The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and ...The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.展开更多
Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV i...Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.展开更多
文摘Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
文摘In recent years,wearable devices-based Human Activity Recognition(HAR)models have received significant attention.Previously developed HAR models use hand-crafted features to recognize human activities,leading to the extraction of basic features.The images captured by wearable sensors contain advanced features,allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions.Poor lighting and limited sensor capabilities can impact data quality,making the recognition of human actions a challenging task.The unimodal-based HAR approaches are not suitable in a real-time environment.Therefore,an updated HAR model is developed using multiple types of data and an advanced deep-learning approach.Firstly,the required signals and sensor data are accumulated from the standard databases.From these signals,the wave features are retrieved.Then the extracted wave features and sensor data are given as the input to recognize the human activity.An Adaptive Hybrid Deep Attentive Network(AHDAN)is developed by incorporating a“1D Convolutional Neural Network(1DCNN)”with a“Gated Recurrent Unit(GRU)”for the human activity recognition process.Additionally,the Enhanced Archerfish Hunting Optimizer(EAHO)is suggested to fine-tune the network parameters for enhancing the recognition process.An experimental evaluation is performed on various deep learning networks and heuristic algorithms to confirm the effectiveness of the proposed HAR model.The EAHO-based HAR model outperforms traditional deep learning networks with an accuracy of 95.36,95.25 for recall,95.48 for specificity,and 95.47 for precision,respectively.The result proved that the developed model is effective in recognizing human action by taking less time.Additionally,it reduces the computation complexity and overfitting issue through using an optimization approach.
基金supported by the National Aeronautics and Space Administration (NASA) (No.ARMD NRA NNH07ZEA001N-IRAC1)the National Science Foundation (NSF)
文摘Approximate dynamic programming(ADP) formulation implemented with an adaptive critic(AC)-based neural network(NN) structure has evolved as a powerful technique for solving the Hamilton-Jacobi-Bellman(HJB) equations.As interest in ADP and the AC solutions are escalating with time,there is a dire need to consider possible enabling factors for their implementations.A typical AC structure consists of two interacting NNs,which is computationally expensive.In this paper,a new architecture,called the ’cost-function-based single network adaptive critic(J-SNAC)’ is presented,which eliminates one of the networks in a typical AC structure.This approach is applicable to a wide class of nonlinear systems in engineering.In order to demonstrate the benefits and the control synthesis with the J-SNAC,two problems have been solved with the AC and the J-SNAC approaches.Results are presented,which show savings of about 50% of the computational costs by J-SNAC while having the same accuracy levels of the dual network structure in solving for optimal control.Furthermore,convergence of the J-SNAC iterations,which reduces to a least-squares problem,is discussed;for linear systems,the iterative process is shown to reduce to solving the familiar algebraic Ricatti equation.
基金Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003)the Ministry of Education Research in the Humanities and Social Sciences Planning Fund (Grant No. 12YJAZH120)
文摘In the propagation of an epidemic in a population, individuals adaptively adjust their behavior to avoid the risk of an epidemic. Differently from existing studies where new links are established randomly, a local link is established preferentially in this paper. We propose a new preferentially reconnecting edge strategy depending on spatial distance (PR- SD). For the PR-SD strategy, the new link is established at random with probability p and in a shortest distance with the probability 1 p. We establish the epidemic model on an adaptive network using Cellular Automata, and demonstrate the effectiveness of the proposed model by numerical simulations. The results show that the smaller the value of parameter p, the more difficult the epidemic spread is. The PR-SD strategy breaks long-range links and establishes as many short-range links as possible, which causes the network efficiency to decrease quickly and the propagation of the epidemic is restrained effectively.
文摘This paper presents an application of adaptive neural network model-based predictive control (MPC) to the air-fuel ratio of an engine simulation. A multi-layer perceptron (MLP) neural network is trained using two on-line training algorithms: a back propagation algorithm and a recursive least squares (RLS) algorithm. It is used to model parameter uncertainties in the nonlinear dynamics of internal combustion (IC) engines. Based on the adaptive model, an MPC strategy for controlling air-fuel ratio is realized, and its control performance compared with that of a traditional PI controller. A reduced Hessian method, a newly developed sequential quadratic programming (SQP) method for solving nonlinear programming (NLP) problems, is implemented to speed up nonlinear optimization in the MPC. Keywords Air-fuel ratio control - IC engine - adaptive neural networks - nonlinear programming - model predictive control Shi-Wei Wang PhD student, Liverpool John Moores University; MSc in Control Systems, University of Sheffield, 2003; BEng in Automatic Technology, Jilin University, 2000; Current research interests automotive engine control, model predictive control, sliding mode control, neural networks.Ding-Li Yu obtained B.Eng from Harbin Civil Engineering College, Harbin, China in 1981, M.Sc from Jilin University of Technology, Changchun, China in 1986 and PhD from Coventry University, U.K. in 1995, all in control engineering. He is currently a Reader in Process Control at Liverpool John Moores University, U.K. His current research interests are in process control, engine control, fault detection and adaptive neural nets. He is a member of SAFEPROCESS TC in IFAC and an associate editor of the IJMIC and the IJISS.
基金supported by National Key Basic Research Program of China(973 Program)under grant no.2012CB315802National Natural Science Foundation of China under grant no.61671081 and no.61132001Prospective Research on Future Networks of Jiangsu Future Networks Innovation Institute under grant no.BY2013095-4-01
文摘The concurrent presence of different types of traffic in multimedia applications might aggravate a burden on the underlying data network, which is bound to affect the transmission quality of the specified traffic. Recently, several proposals for fulfilling the quality of service(QoS) guarantees have been presented. However, they can only support coarse-grained QoS with no guarantee of throughput, jitter, delay or loss rate for different applications. To address these more challenging problems, an adaptive scheduling algorithm for Parallel data Processing with Multiple Feedback(PPMF) queues based on software defined networks(SDN) is proposed in this paper, which can guarantee the quality of service of high priority traffic in multimedia applications. PPMF combines the queue bandwidth feedback mechanism to realise the automatic adjustment of the queue bandwidth according to the priority of the packet and network conditions, which can effectively solve the problem of network congestion that has been experienced by some queues for a long time. Experimental results show PPMF significantly outperforms other existing scheduling approaches in achieving 35--80% improvement on average time delay by adjusting the bandwidth adaptively, thus ensuring the transmission quality of the specified traffic and avoiding effectively network congestion.
基金supported by the National Science Foundation (NSF) under Grants No.60832001,No.61271174 the National State Key Lab oratory of Integrated Service Network (ISN) under Grant No.ISN01080202
文摘To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.
基金supported by National Natural Science Foundationof China (No. 60674056)National Key Basic Research and Devel-opment Program of China (No. 2002CB312200)+1 种基金Outstanding YouthFunds of Liaoning Province (No. 2005219001)Educational De-partment of Liaoning Province (No. 2006R29 and No. 2007T80)
文摘In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.
文摘Mutual fund investment continues to play a very important role in the world financial markets especially in developing economies where the capital market is not very matured and tolerant of small scale investors.The total mutual fund asset globally as at the end of 2016 was in excess of$40.4 trillion.Despite its success there are uncertainties as to whether mutual funds in Ghana obtain optimal performance relative to their counterparts in United States,Luxembourg,Ireland,France,Australia,United Kingdom,Japan,China and Brazil.We contribute to the extant literature on mutual fund performance evaluation using a collection of more sophisticated econometric models.We selected six continuous historical years that is 2010-2011,2012-2013 and 2014-2015 to construct a mutual fund performance evaluation model utilizing the fast adaptive neural network classifier(FANNC),and to compare our results with those from an enhanced resilient back propagation neural networks(ERBPNN)model.Our FANNC model outperformed the existing models in terms of processing time and error rate.This makes it ideal for financial application that involves large volume of data and routine updates.
文摘To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells.
基金Project supported by the Key Project of Hunan Provincial Educational Department of China (Grant No 04A058)the General Project of Hunan Provincial Educational Department of China (Grant No 07C754)the National Natural Science Foundation of China (Grant No 30570432)
文摘Based on the adaptive network, the feedback mechanism and interplay between the network topology and the diffusive process of information are studied. The results reveal that the adaptation of network topology can drive systems into the scale-free one with the assortative or disassortative degree correlations, and the hierarchical clustering. Meanwhile, the processes of the information diffusion are extremely speeded up by the adaptive changes of network topology.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20873130)the Graduate Innovation Fund of USTC
文摘We study evolutionary prisoner's dilemma game on adaptive networks where a population of players co-evolves with their interaction networks. During the co-evolution process, interacted players with opposite strategies either rewire the link between them with probability p or update their strategies with probability 1 - p depending on their payoffs. Numerical simulation shows that the final network is either split into some disconnected communities whose players share the same strategy within each community or forms a single connected network in which all nodes are in the same strategy. Interestingly, the density of cooperators in the final state can be maximised in an intermediate range of p via the competition between time scale of the network dynamics and that of the node dynamics. Finally, the mean-field analysis helps to understand the results of numerical simulation. Our results may provide some insight into understanding the emergence of cooperation in the real situation where the individuals' behaviour and their relationship adaptively co-evolve.
基金supported by the Science&Technology Department of Sichuan Province under Grant No.2020YJ0044。
文摘In this paper,the problems of robust consensus tracking control for the second-order multi-agent system with uncertain model parameters and nonlinear disturbances are considered.An adaptive control strategy is proposed to smooth the agent’s trajectory,and the neural network is constructed to estimate the system’s unknown components.The consensus conditions are demonstrated for tracking a leader with nonlinear dynamics under an adaptive control algorithm in the absence of model uncertainties.Then,the results are extended to the system with unknown time-varying disturbances by applying the neural network estimation to compensating for the uncertain parts of the agents’models.Update laws are designed based on the Lyapunov function terms to ensure the effectiveness of robust control.Finally,the theoretical results are verified by numerical simulations,and a comparative experiment is conducted,showing that the trajectories generated by the proposed method exhibit less oscillation and converge faster.
基金ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina (No .3 0 3 70 3 95 )
文摘Objective This paper presents classifications of m ental tasks based on EEG signals using an adaptive Radial Basis Function (RBF) n etwork with optimal centers and widths for the Brain-Computer Interface (BCI) s chemes. Methods Initial centers and widths of the network are s elected by a cluster estimation method based on the distribution of the training set. Using a conjugate gradient descent method, they are optimized during train ing phase according to a regularized error function considering the influence of their changes to output values. Results The optimizing process improves the performance of RBF network, and its best cognition rate of three t ask pairs over four subjects achieves 87.0%. Moreover, this network runs fast du e to the fewer hidden layer neurons. Conclusion The adaptive RB F network with optimal centers and widths has high recognition rate and runs fas t. It may be a promising classifier for on-line BCI scheme.
基金Foundation of Young Backbone Teacher of Beijing Citygrant number:102KB000845
文摘Fetal ECG extraction has the vital significance for fetal monitoring.This paper introduces a method of extracting fetal ECG based on adaptive linear neural network.The method can be realized by training a small quantity of data.In addition,a better result can be achieved by improving neural network structure.Thus,more easily identified fetal ECG can be extracted.Experimental results show that the adaptive linear neural network can be used to extract fetal ECG from maternal abdominal signal effectively.What's more,a clearer fetal ECG can be extracted by improving neural network structure.
基金supported by the National Natural Science Foundation of China(61975020,62171053)。
文摘Accurate traffic pattern prediction in largescale networks is of great importance for intelligent system management and automatic resource allocation.System-level mobile traffic forecasting has significant challenges due to the tremendous temporal and spatial dynamics introduced by diverse Internet user behaviors and frequent traffic migration.Spatialtemporal graph modeling is an efficient approach for analyzing the spatial relations and temporal trends of mobile traffic in a large system.Previous research may not reflect the optimal dependency by ignoring inter-base station dependency or pre-determining the explicit geological distance as the interrelationship of base stations.To overcome the limitations of graph structure,this study proposes an adaptive graph convolutional network(AGCN)that captures the latent spatial dependency by developing self-adaptive dependency matrices and acquires temporal dependency using recurrent neural networks.Evaluated on two mobile network datasets,the experimental results demonstrate that this method outperforms other baselines and reduces the mean absolute error by 3.7%and 5.6%compared to time-series based approaches.
文摘The coating on the electrodes contains many kinds of raw materials which affect significantly on the mechanical properties of deposited metals. It is still a problem how to predict and control the mechanical properties of deposited metals directly according to the components of coating on the electrodes. In this paper an electrode intelligent design system is developed by means of fuzzy neural network technology and genetic algorithm,, dynamic link library, object linking and embedding and multithreading. The front-end application and customer interface of the system is realized by using visual C ++ program language and taking SQL Server 2000 as background database. It realizes series functions including automatic design of electrode formula, intelligent prediction of electrode properties, inquiry of electrode information, output of process report based on normalized template and electronic storage and search of relative files.
文摘Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.
基金supported by the National Natural Science Foundation of China(U23A6005 and 32171721)State Key Laboratory of Pulp and Paper Engineering(202305,2023ZD01,2023C02)+1 种基金Guangdong Province Basic and Application Basic Research Fund(2023B1515040013)the Fundamental Research Funds for the Central Universities(2023ZYGXZR045).
文摘The serious environmental threat caused by petroleum-based plastics has spurred more researches in developing substitutes from renewable sources.Starch is desirable for fabricating bioplastic due to its abundance and renewable nature.However,limitations such as brittleness,hydrophilicity,and thermal properties restrict its widespread application.To overcome these issues,covalent adaptable network was constructed to fabricate a fully bio-based starch plastic with multiple advantages via Schiff base reactions.This strategy endowed starch plastic with excellent thermal processability,as evidenced by a low glass transition temperature(T_(g)=20.15℃).Through introducing Priamine with long carbon chains,the starch plastic demonstrated superior flexibility(elongation at break=45.2%)and waterproof capability(water contact angle=109.2°).Besides,it possessed a good thermal stability and self-adaptability,as well as solvent resistance and chemical degradability.This work provides a promising method to fabricate fully bio-based plastics as alternative to petroleum-based plastics.
基金supported by the National Natural Science Foundation of China(61174221)
文摘Reentry attitude control for reusable launch vehicles (RLVs) is challenging due to the characters of fast nonlinear dy- namics and large flight envelop. A hierarchical structured attitude control system for an RLV is proposed and an unpowered RLV con- trol model is developed. Then, the hierarchical structured control frame consisting of attitude controller, compound control strategy and control allocation is presented. At the core of the design is a robust adaptive control (RAC) law based on dual loop time-scale separation. A radial basis function neural network (RBFNN) is implemented for compensation of uncertain model dynamics and external disturbances in the inner loop. And then the robust op- timization is applied in the outer loop to guarantee performance robustness. The overall control design frame retains the simplicity in design while simultaneously assuring the adaptive and robust performance. The hierarchical structured robust adaptive con- troller (HSRAC) incorporates flexibility into the design with regard to controller versatility to various reentry mission requirements. Simulation results show that the improved tracking performance is achieved by means of RAC.