Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-com...Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-complete problem, the available time-based retransmission scheme and its enhanced retransmission scheme have exponential computational complexity and thus are not scalable to large networks. In this paper, we present an efficient heuristic scheme based on hypergraph coloring and also its enhanced heuristic scheme to improve the transmission efficiency. Basically, our proposed schemes fi rst create a hypergraph according to the packet-loss matrix. Then our schemes solve the problem of generating XORed packets by coloring the edges of hypergraph. Extensive simulation results demonstrate that, the heuristic scheme based on hypergraph coloring and its enhanced scheme can achieve almost the same transmission efficiency as the available ones, but have much lower computational complexity, which is very important for the wireless devices without high computation capacity.展开更多
Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless...Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.展开更多
To reduce the feedbacks between access point and all nodes in lossy wireless networks, a clustered system model consisting of a cluster head and multiple common nodes is investigated. Network coding has been proposed ...To reduce the feedbacks between access point and all nodes in lossy wireless networks, a clustered system model consisting of a cluster head and multiple common nodes is investigated. Network coding has been proposed for more efficient retransmissions in reliable multicast. However, in existing schemes the access point retransmits coded packets, which causes severe delay and considerable feedbacks. In this paper, an XOR scheme based on clustered model is presented. For this scheme, the cluster head broadcasts combined packets by XORing lost packets appropriately to recover lost packets locally. We also analyze the performance in terms of expected number of transmissions. Simulation results verify theoretic analysis. And our results show that proposed XOR offers a compromise between ARQ and random linear network coding.展开更多
Recently,coded caching has been treated as a promising technique to alleviate the traffic burden in wireless networks.To support high efficient coded caching multicast transmissions,the time-varying heterogeneous chan...Recently,coded caching has been treated as a promising technique to alleviate the traffic burden in wireless networks.To support high efficient coded caching multicast transmissions,the time-varying heterogeneous channel conditions need to be considered.In this paper,a practical and novel multi-source spinal coding(MSSC)scheme is developed for coded caching multicast transmissions under heterogeneous channel conditions.By exploring joint design of network coding and spinal coding(SC),MSSC can achieve unequal link rates in multicast transmissions for different users.Moreover,by leveraging the rateless feature of SC in our design,MSSC can well adapt the link rates of all users in multicast transmissions without any feedback of time-varying channel conditions.A maximum likelihood(ML)based decoding process for MSSC is also developed,which can achieve a linear complexity with respect to the user number in the multicast transmission.Simulation results validate the effectiveness of the MSSC scheme.Compared to the existing scheme,the sum rate of MSSC in multicast transmissions is improved by about 20%.When applying MSSC in coded caching systems,the total transmission time can be reduced by up to 48% for time-varying channels.展开更多
A Two-hop Wireless Network (TWN) is the basic topology structure that provides network coding opportunity for improving throughput. Network coding on a homogeneous TWN, in which all the data flows have the same packet...A Two-hop Wireless Network (TWN) is the basic topology structure that provides network coding opportunity for improving throughput. Network coding on a homogeneous TWN, in which all the data flows have the same packet size and all the links have the same transmission rate, has been extensively investigated. In this paper, network coding on more practical heterogeneous TWNs, featured by various packet sizes and transmission rates, is studied. Based on the Markov model, the throughput of the proposed network coding scheme, together with the throughput gain, is derived, which matches the simulation results very well. Numerical analyses indicate that, encoding the packets with close size and close transmission rate and enlarging buffer size at the relay node help in improving the throughput gain.展开更多
To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is de...To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1.展开更多
Recent research shows using network sion efficiency in wireless networks greatly et for retransmission over composite fading coding for reliable multicast can improve the retransmis- In this paper, we study how to co...Recent research shows using network sion efficiency in wireless networks greatly et for retransmission over composite fading coding for reliable multicast can improve the retransmis- In this paper, we study how to code the composite pack- channels efficiently. For the composite fading environ- ment with muhiple receivers, receivers experience different fading at any time. It' s very important to code the composite packet so that intended receivers are in good channel qualities, because in- tended receivers in deep fading have little opportunity to receive the composite packet correctly. Hence, we propose a novel composite packet coding principle of maximizing the total SNR of intend- ed receivers. Since the proposed principle is an NP-complete problem, an efficient heuristic algo- rithm with low complexity is given for finding a suboptimal solution. Simulation results show the heu- ristic based scheme achieves higher transmission efficiency than other network coding-based schemes due to the multi-user diversity gain.展开更多
Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC...Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.展开更多
In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteris...In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.展开更多
Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences ...Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.展开更多
This paper investigates the maximal achievable multi-rate throughput problem of a multicast ses-sion at the presence of network coding. Deviating from previous works which focus on single-rate network coding, our work...This paper investigates the maximal achievable multi-rate throughput problem of a multicast ses-sion at the presence of network coding. Deviating from previous works which focus on single-rate network coding, our work takes the heterogeneity of sinks into account and provides multiple data layers to address the problem. Firstly formulated is the maximal achievable throughput problem with the assumption that the data layers are independent and layer rates are static. It is proved that the problem in this case is, unfortunately, Non-deterministic Polynomial-time (NP)-hard. In addition, our formulation is extended to the problems with dependent layers and dynamic layers. Furthermore, the approximation algorithm which satisfies certain fair-ness is proposed.展开更多
To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random line...To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.展开更多
Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data sy...Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data synchronization was mainly studied in the latency-tolerant distributed databases,or assuming the general model of wireless ad hoc networks.In this paper,we propose a pair of linear network coding(NC)and all-to-all broadcast based fast data synchronization algorithms for wireless ad hoc networks whose topology is under operator’s control.We consider both data block selection and transmitting node selection for exploiting the benefits of NC.Instead of using the store-and-forward protocol as in the conventional uncoded approach,a compute-and-forward protocol is used in our scheme,which improves the transmission efficiency.The performance of the proposed algorithms is studied under different values of network size,network connection degree,and per-hop packet error rate.Simulation results demonstrate that our algorithms significantly reduce the times slots used for data synchronization compared with the baseline that does not use NC.展开更多
An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the a...An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.展开更多
Network coding is able to address output conflicts when fanout splitting is allowed for multicast switching.Hence,it successfully achieves a larger rate region than non-coding approaches in crossbar switches.However,n...Network coding is able to address output conflicts when fanout splitting is allowed for multicast switching.Hence,it successfully achieves a larger rate region than non-coding approaches in crossbar switches.However,network coding requires large coding buffers and a high computational cost on encoding and decoding.In this paper,we propose a novel Online Network Coding framework called Online NC for multicast switches,which is adaptive to constrained buffers.Moreover,it enjoys a much lower decoding complexity by a Vandermonde matrix based approach,as compared to conven-tional randomized network coding Our approach realizes online coding with one coding algo-rithm that synchronizes buffering and coding.Therefore,we significantly reduce requirements on buffer space,while also sustaining high throughputs.We confirm the superior advantages of our contributions using empirical studies.展开更多
Mission critical Machine-type Communication(mcMTC),also referred to as Ultra-reliable Low Latency Communication(URLLC),has become a research hotspot.It is primarily characterized by communication that provides ultra-h...Mission critical Machine-type Communication(mcMTC),also referred to as Ultra-reliable Low Latency Communication(URLLC),has become a research hotspot.It is primarily characterized by communication that provides ultra-high reliability and very low latency to concurrently transmit short commands to a massive number of connected devices.While the reduction in physical(PHY)layer overhead and improvement in channel coding techniques are pivotal in reducing latency and improving reliability,the current wireless standards dedicated to support mcMTC rely heavily on adopting the bottom layers of general-purpose wireless standards and customizing only the upper layers.The mcMTC has a significant technical impact on the design of all layers of the communication protocol stack.In this paper,an innovative bottom-up approach has been proposed for mcMTC applications through PHY layer targeted at improving the transmission reliability by implementing ultra-reliable channel coding scheme in the PHY layer of IEEE 802.11a standard bearing in mind short packet transmission system.To achieve this aim,we analyzed and compared the channel coding performance of convolutional codes(CCs),low-density parity-check(LDPC)codes,and polar codes in wireless network on the condition of short data packet transmission.The Viterbi decoding algorithm(VA),logarithmic belief propagation(Log-BP)algorithm,and cyclic redundancy check(CRC)successive cancellation list(SCL)(CRC-SCL)decoding algorithm were adopted to CC,LDPC codes,and polar codes,respectively.Consequently,a new PHY layer for mcMTC has been proposed.The reliability of the proposed approach has been validated by simulation in terms of Bit error rate(BER)and packet error rate(PER)vs.signal-to-noise ratio(SNR).The simulation results demonstrate that the reliability of IEEE 802.11a standard has been significantly improved to be at PER=10−5 or even better with the implementation of polar codes.The results also show that the general-purpose wireless networks are prominent inproviding short packet mcMTC with the modification needed.展开更多
The network coding is a new technology in the field of information in 21st century. It could enhance the network throughput and save the energy consumption, and is mainly based on the single transmission rate. However...The network coding is a new technology in the field of information in 21st century. It could enhance the network throughput and save the energy consumption, and is mainly based on the single transmission rate. However, with the development of wireless network and equipment, wireless local network MAC protocols have already supported the multi-rate transmission. This paper investigates the optimal relay selection problem based on network coding. Firstly, the problem is formulated as an optimization problem. Moreover, a relay algorithm based on network coding is proposed and the transmission time gain of our algorithm over the traditional relay algorithm is analyzed. Lastly, we compare total transmission time and the energy consumption of our proposed algorithm, Network Coding with Relay Assistance (NCRA), Transmission Request (TR), and the Direct Transmission (DT) without relay algorithm by adopting IEEE 802.11b. The simulation results demonstrate that our algorithm that improves the coding opportunity by the cooperation of the relay nodes leads to the transmission time decrease of up to 17% over the traditional relay algorithms.展开更多
The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presente...The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presented that it uses network coding to reduce queue length and delay time when self-similar traffic occurs. Based on synchronization, data packets are classified by destination address and lengths. Simulation results show that with the proposed synchronization techniques, network coding, even in scenarios with burst self-similar traffic, where network coding could not have been deployed so far, increases throughput and lowers packet loss in wireless mesh networks.展开更多
Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most exis...Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.展开更多
This paper is concerned with two important issues in multicast routing problem with network coding for the first time, namely the load balancing and the transmission delay. A bi-objective optimization problem is formu...This paper is concerned with two important issues in multicast routing problem with network coding for the first time, namely the load balancing and the transmission delay. A bi-objective optimization problem is formulated, where the average bandwidth utilization ratio and the average transmission delay are both to be minimized. To address the problem, we propose a novel multiobjective artificial bee colony algorithm, with two performance enhancing schemes integrated. The first scheme is an elitism-based food source generation scheme for scout bees, where for each scout bee, a new food source is generated by either recombining two elite solutions randomly selected from an archive or sampling the probabilistic distribution model built from all elite solutions in this archive. This scheme provides scouts with high-quality and diversified food sources and thus helps to strengthen the global exploration. The second one is a Pareto local search operator with the concept of path relinking integrated. This scheme is incorporated into the onlooker bee phase for exploring neighboring areas of promising food sources and hence enhances the local exploitation. Experimental results show that the proposed algorithm performs better than a number of state-of-the-art multiobjective evolutionary algorithms in terms of the approximated Pareto-optimal front.展开更多
基金supported by the National Natural Science Foundation of China (60502046, 60573034)863 Foundation of China (2007AA01Z215)
文摘Recently, network coding has been applied to the loss recovery of reliable broadcast transmission in wireless networks. Since it was proved that fi nding the optimal set of lost packets for XOR-ing is a complex NP-complete problem, the available time-based retransmission scheme and its enhanced retransmission scheme have exponential computational complexity and thus are not scalable to large networks. In this paper, we present an efficient heuristic scheme based on hypergraph coloring and also its enhanced heuristic scheme to improve the transmission efficiency. Basically, our proposed schemes fi rst create a hypergraph according to the packet-loss matrix. Then our schemes solve the problem of generating XORed packets by coloring the edges of hypergraph. Extensive simulation results demonstrate that, the heuristic scheme based on hypergraph coloring and its enhanced scheme can achieve almost the same transmission efficiency as the available ones, but have much lower computational complexity, which is very important for the wireless devices without high computation capacity.
基金Supported by the National Natural Science Foundation of China (No. 60903156), and the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2010ZX03004-001-02).
文摘Network coding has been considered as one of the effective strategies that improve the throughput of multi- hop wireless networks. In order to effectively apply network coding techniques to the real multi-hop wireless networks, a practical network coding aware routing protocol is proposed in this paper, for unicast sessions in multi- hop wireless networks. The protocol is based on a novel routing metric design that captures the characteristics of network coding and unicast sessions. To ensure the novel routing mettle can operate with practical and widely available path calculation algorithms, a unique mapping process is used to map a real wireless network to a virtual network. The mapping process ensures that the paths with the biggest coding opportunities will be selected by commonly used path calculation algorithms. Simulation results show that the proposed routing protocol is effective to improve the network throughput.
文摘To reduce the feedbacks between access point and all nodes in lossy wireless networks, a clustered system model consisting of a cluster head and multiple common nodes is investigated. Network coding has been proposed for more efficient retransmissions in reliable multicast. However, in existing schemes the access point retransmits coded packets, which causes severe delay and considerable feedbacks. In this paper, an XOR scheme based on clustered model is presented. For this scheme, the cluster head broadcasts combined packets by XORing lost packets appropriately to recover lost packets locally. We also analyze the performance in terms of expected number of transmissions. Simulation results verify theoretic analysis. And our results show that proposed XOR offers a compromise between ARQ and random linear network coding.
基金supported by National Natural Science Foundation of China(No.61801290 and 61771312).
文摘Recently,coded caching has been treated as a promising technique to alleviate the traffic burden in wireless networks.To support high efficient coded caching multicast transmissions,the time-varying heterogeneous channel conditions need to be considered.In this paper,a practical and novel multi-source spinal coding(MSSC)scheme is developed for coded caching multicast transmissions under heterogeneous channel conditions.By exploring joint design of network coding and spinal coding(SC),MSSC can achieve unequal link rates in multicast transmissions for different users.Moreover,by leveraging the rateless feature of SC in our design,MSSC can well adapt the link rates of all users in multicast transmissions without any feedback of time-varying channel conditions.A maximum likelihood(ML)based decoding process for MSSC is also developed,which can achieve a linear complexity with respect to the user number in the multicast transmission.Simulation results validate the effectiveness of the MSSC scheme.Compared to the existing scheme,the sum rate of MSSC in multicast transmissions is improved by about 20%.When applying MSSC in coded caching systems,the total transmission time can be reduced by up to 48% for time-varying channels.
基金Supported by the National Natural Science Foundation of China(No.61070190 and 61001126)Zhejiang Provincial Natural Science Foundation of China(No.Z1100455)Ph.D.Programs Foundation of Ministry of Education of China(No.20123317110002)
文摘A Two-hop Wireless Network (TWN) is the basic topology structure that provides network coding opportunity for improving throughput. Network coding on a homogeneous TWN, in which all the data flows have the same packet size and all the links have the same transmission rate, has been extensively investigated. In this paper, network coding on more practical heterogeneous TWNs, featured by various packet sizes and transmission rates, is studied. Based on the Markov model, the throughput of the proposed network coding scheme, together with the throughput gain, is derived, which matches the simulation results very well. Numerical analyses indicate that, encoding the packets with close size and close transmission rate and enlarging buffer size at the relay node help in improving the throughput gain.
基金Supported by National Natural Science Foundation of China (No.61271174)Young Teachers' Innovation Foundation of Xidian University(K5051303137)
文摘To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1.
文摘Recent research shows using network sion efficiency in wireless networks greatly et for retransmission over composite fading coding for reliable multicast can improve the retransmis- In this paper, we study how to code the composite pack- channels efficiently. For the composite fading environ- ment with muhiple receivers, receivers experience different fading at any time. It' s very important to code the composite packet so that intended receivers are in good channel qualities, because in- tended receivers in deep fading have little opportunity to receive the composite packet correctly. Hence, we propose a novel composite packet coding principle of maximizing the total SNR of intend- ed receivers. Since the proposed principle is an NP-complete problem, an efficient heuristic algo- rithm with low complexity is given for finding a suboptimal solution. Simulation results show the heu- ristic based scheme achieves higher transmission efficiency than other network coding-based schemes due to the multi-user diversity gain.
基金supported by the National Natural Science Foundation of China(6104000561001126+5 种基金61271262)the China Postdoctoral Science Foundation Funded Project(201104916382012T50789)the Natural Science Foundation of Shannxi Province of China(2011JQ8036)the Special Fund for Basic Scientific Research of Central Colleges (CHD2012ZD005)the Research Fund of Zhejiang University of Technology(20100244)
文摘Cooperative communication can achieve spatial diversity gains,and consequently combats signal fading due to multipath propagation in wireless networks powerfully.A novel complex field network-coded cooperation(CFNCC) scheme based on multi-user detection for the multiple unicast transmission is proposed.Theoretic analysis and simulation results demonstrate that,compared with the conventional cooperation(CC) scheme and network-coded cooperation(NCC) scheme,CFNCC would obtain higher network throughput and consumes less time slots.Moreover,a further investigation is made for the symbol error probability(SEP) performance of CFNCC scheme,and SEPs of CFNCC scheme are compared with those of NCC scheme in various scenarios for different signal to noise ratio(SNR) values.
基金National Outstanding Youth Founda-tion (No.60525303)National Natural Science Foundation of China(No.60404022,60704009)Natural Science Foundation of Hebei Province (No.F2005000390,F2006000270).
文摘In this paper,we apply adaptive coded modulation (ACM) schemes to a wireless networked control system (WNCS) to improve the energy efficiency and increase the data rate over a fading channel.To capture the characteristics of varying rate, interference,and routing in wireless transmission channels,the concepts of equivalent delay (ED) and networked condition index (NCI) are introduced.Also,the analytic lower and upper bounds of EDs are obtained.Furthermore,we model the WNCS as a multicontroller switched system (MSS) under consideration of EDs and loss index in the wireless transmission.Sufficient stability condition of the closed-loop WNCS and corresponding dynamic state feedback controllers are derived in terms of linear matrix inequality (LMI). Numerical results show the validity and advantage of our proposed control strategies.
基金Supported by Major Projects of the National Science and Technology (2010ZX03003-003-02) National 973 Key Project (2011CB302903)
文摘Based on the sequence entropy of Shannon information theory, we work on the network coding technology in Wireless Sensor Network (WSN). In this paper, we take into account the similarity of the transmission sequences at the network coding node in the multi-sources and multi-receivers network in order to compress the data redundancy. Theoretical analysis and computer simulation results show that this proposed scheme not only further improves the efficiency of network transmission and enhances the throughput of the network, but also reduces the energy consumption of sensor nodes and extends the network life cycle.
基金Supported by the National 863 High-tech Program of China (No.2003AA121560) and High-tech Project of Jiangsu Province (No.BG2003001).
文摘This paper investigates the maximal achievable multi-rate throughput problem of a multicast ses-sion at the presence of network coding. Deviating from previous works which focus on single-rate network coding, our work takes the heterogeneity of sinks into account and provides multiple data layers to address the problem. Firstly formulated is the maximal achievable throughput problem with the assumption that the data layers are independent and layer rates are static. It is proved that the problem in this case is, unfortunately, Non-deterministic Polynomial-time (NP)-hard. In addition, our formulation is extended to the problems with dependent layers and dynamic layers. Furthermore, the approximation algorithm which satisfies certain fair-ness is proposed.
基金Supported by the National Natural Science Foundation of China ( No. 60832001 ).
文摘To maximize the aggregate throughput achieved in heterogeneous networks, this paper investigates inter-session network coding for the distribution of layered source data. We define inter-layer hierarchical random linear network codes (IHRLNC), which not only take the flexibility of intersession network coding for layer mixing but also consider the strict priority inherent in the layered source data. Furthermore, we propose the inter-layer hierarchical multicast (IHM), which performs IHRLNC in the network such that each sink can recover some source layers according to its individu- al capacity. To determine the optimal type of IHRLNC that should be performed on each edge in IHM, we formulate an optimization problem based on 0-1 integer linear programming, and propose a heuristic approach to approximate the optimal solution in polynomial time. Simulation results show that the proposed IHM can achieve throughput gains over the layered muhicast schemes.
基金This work is financially supported by Beijing Municipal Natural Science Foundation(No.L202012)the Open Research Project of the State Key Laboratory of Media Convergence and Communication,Communication University of China(No.SKLMCC2020KF008)the Fundamental Research Funds for the Central Universities(No.2020RC05).
文摘Fast data synchronization in wireless ad hoc networks is a challenging and critical problem.It is fundamental for efficient information fusion,control and decision in distributed systems.Previously,distributed data synchronization was mainly studied in the latency-tolerant distributed databases,or assuming the general model of wireless ad hoc networks.In this paper,we propose a pair of linear network coding(NC)and all-to-all broadcast based fast data synchronization algorithms for wireless ad hoc networks whose topology is under operator’s control.We consider both data block selection and transmitting node selection for exploiting the benefits of NC.Instead of using the store-and-forward protocol as in the conventional uncoded approach,a compute-and-forward protocol is used in our scheme,which improves the transmission efficiency.The performance of the proposed algorithms is studied under different values of network size,network connection degree,and per-hop packet error rate.Simulation results demonstrate that our algorithms significantly reduce the times slots used for data synchronization compared with the baseline that does not use NC.
文摘An energy-saving algorithm for wireless sensor networks based on network coding and compressed sensing (CS-NCES) is proposed in this paper. Along with considering the correlations of data spatial and temporal, the algorithm utilizes the similarities between the encoding matrix of network coding and the measurement matrix of compressed sensing. The source node firstly encodes the data, then compresses the coding data by cot-npressed sensing over finite fields. Compared with the network coding scheme, simulation results show that CS-NCES reduces the energy consumption about 25.30/0-34.50/0 and improves the efficiency of data reconstruction about 1.56%- 5.98%. The proposed algorithm can not only enhance the usability of network coding in wireless sensor networks, but also improve the network performance.
基金Supported by the National 863 Projects of China(2009AA01Z205)the Fund of National Laboratory(P080010)+2 种基金the Natural Science Foundation of China(60872010,60972016)the Program for New Century Excellent Talents in University (NCET070339)the Funds for Distinguished Young Scientists of Hubei,China(2009 CDA150)
文摘Network coding is able to address output conflicts when fanout splitting is allowed for multicast switching.Hence,it successfully achieves a larger rate region than non-coding approaches in crossbar switches.However,network coding requires large coding buffers and a high computational cost on encoding and decoding.In this paper,we propose a novel Online Network Coding framework called Online NC for multicast switches,which is adaptive to constrained buffers.Moreover,it enjoys a much lower decoding complexity by a Vandermonde matrix based approach,as compared to conven-tional randomized network coding Our approach realizes online coding with one coding algo-rithm that synchronizes buffering and coding.Therefore,we significantly reduce requirements on buffer space,while also sustaining high throughputs.We confirm the superior advantages of our contributions using empirical studies.
文摘Mission critical Machine-type Communication(mcMTC),also referred to as Ultra-reliable Low Latency Communication(URLLC),has become a research hotspot.It is primarily characterized by communication that provides ultra-high reliability and very low latency to concurrently transmit short commands to a massive number of connected devices.While the reduction in physical(PHY)layer overhead and improvement in channel coding techniques are pivotal in reducing latency and improving reliability,the current wireless standards dedicated to support mcMTC rely heavily on adopting the bottom layers of general-purpose wireless standards and customizing only the upper layers.The mcMTC has a significant technical impact on the design of all layers of the communication protocol stack.In this paper,an innovative bottom-up approach has been proposed for mcMTC applications through PHY layer targeted at improving the transmission reliability by implementing ultra-reliable channel coding scheme in the PHY layer of IEEE 802.11a standard bearing in mind short packet transmission system.To achieve this aim,we analyzed and compared the channel coding performance of convolutional codes(CCs),low-density parity-check(LDPC)codes,and polar codes in wireless network on the condition of short data packet transmission.The Viterbi decoding algorithm(VA),logarithmic belief propagation(Log-BP)algorithm,and cyclic redundancy check(CRC)successive cancellation list(SCL)(CRC-SCL)decoding algorithm were adopted to CC,LDPC codes,and polar codes,respectively.Consequently,a new PHY layer for mcMTC has been proposed.The reliability of the proposed approach has been validated by simulation in terms of Bit error rate(BER)and packet error rate(PER)vs.signal-to-noise ratio(SNR).The simulation results demonstrate that the reliability of IEEE 802.11a standard has been significantly improved to be at PER=10−5 or even better with the implementation of polar codes.The results also show that the general-purpose wireless networks are prominent inproviding short packet mcMTC with the modification needed.
基金Supported by Anhui Natural Science Foundation, China(No.1308085MF87, 128085MF89)Open Fund of State Key Laboratory for Novel Software Technology,Nanjing University,China (No.KFKT2011B18)Hefei University of Technology Ph.D. Foundation (No.2010HGBZ-0552)
文摘The network coding is a new technology in the field of information in 21st century. It could enhance the network throughput and save the energy consumption, and is mainly based on the single transmission rate. However, with the development of wireless network and equipment, wireless local network MAC protocols have already supported the multi-rate transmission. This paper investigates the optimal relay selection problem based on network coding. Firstly, the problem is formulated as an optimization problem. Moreover, a relay algorithm based on network coding is proposed and the transmission time gain of our algorithm over the traditional relay algorithm is analyzed. Lastly, we compare total transmission time and the energy consumption of our proposed algorithm, Network Coding with Relay Assistance (NCRA), Transmission Request (TR), and the Direct Transmission (DT) without relay algorithm by adopting IEEE 802.11b. The simulation results demonstrate that our algorithm that improves the coding opportunity by the cooperation of the relay nodes leads to the transmission time decrease of up to 17% over the traditional relay algorithms.
基金Supported by the National Natural Science Foundation of China (60873082,61073186, 61073104, 60903058) China Postdoctoral Science Foundation (20090451108)the Science and Technology Planning Project of Hunan Province (2011FJ3237).
文摘The wireless mesh networks trathc are of selt:snmlarlty and the network pertOrmance is degraded by seltsimillar traffic. Network coding is a new technology which improves network performance. An algorithm is presented that it uses network coding to reduce queue length and delay time when self-similar traffic occurs. Based on synchronization, data packets are classified by destination address and lengths. Simulation results show that with the proposed synchronization techniques, network coding, even in scenarios with burst self-similar traffic, where network coding could not have been deployed so far, increases throughput and lowers packet loss in wireless mesh networks.
基金Projects(61173169,61106036)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0798)Program for New Century Excellent Talents in University,China
文摘Recent researches show that inter-session network coding could decrease the number of packets transmission and achieve higher throughput in wireless network compared with traditional forwarding mechanism. In most existing relay mechanisms based on inter-session network such as COPE, relay node demands to collect the messages from its neighbor nodes to get notice of which packets already overheard by them so as to determine whether there exists coding opportunity between or among forwarding packets. However, transmission overhead of this message collection and computing cost of opportunity determination will degrade the performance of these mechanisms. It is observed that coding opportunity at relay node is much more related with the local topology, and the opportunity of encoding three or more packets together is far less than that of encoding two packets together in wireless network with general density. Based on this, a new coding-aware routing mechanism, named TCAR, is proposed. TCAR ignores the oppommity of encoding three or more than three packets together. Each relay node maintains an encoding mapping table being established according to the result of its local topology detection, which can be used to calculate the path cost during routing setup phase, and determine that which two packets can be encoded together during the packets forwarding phase. In TCAR, instead of periodic messages collection, each relay nodes just need once local topology detection, and the encoding determination is much simpler than that of the former mechanisms. Simulation results show that compared with typical inter-session network coding mechanisms COPE and COPE-based routing, TCAR achieves 12% and 7% throughput gains, and keeps the minimum end to end delay.
基金supported in part by National Natural Science Foundation of China (No.61505168, No. 61802319) the Fundamental Research Funds for the Central Universities, P. R. China
文摘This paper is concerned with two important issues in multicast routing problem with network coding for the first time, namely the load balancing and the transmission delay. A bi-objective optimization problem is formulated, where the average bandwidth utilization ratio and the average transmission delay are both to be minimized. To address the problem, we propose a novel multiobjective artificial bee colony algorithm, with two performance enhancing schemes integrated. The first scheme is an elitism-based food source generation scheme for scout bees, where for each scout bee, a new food source is generated by either recombining two elite solutions randomly selected from an archive or sampling the probabilistic distribution model built from all elite solutions in this archive. This scheme provides scouts with high-quality and diversified food sources and thus helps to strengthen the global exploration. The second one is a Pareto local search operator with the concept of path relinking integrated. This scheme is incorporated into the onlooker bee phase for exploring neighboring areas of promising food sources and hence enhances the local exploitation. Experimental results show that the proposed algorithm performs better than a number of state-of-the-art multiobjective evolutionary algorithms in terms of the approximated Pareto-optimal front.