In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ...In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278)
文摘In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.