期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
The Lightweight Edge-Side Fault Diagnosis Approach Based on Spiking Neural Network
1
作者 Jingting Mei Yang Yang +2 位作者 Zhipeng Gao Lanlan Rui Yijing Lin 《Computers, Materials & Continua》 SCIE EI 2024年第6期4883-4904,共22页
Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics ... Network fault diagnosis methods play a vital role in maintaining network service quality and enhancing user experience as an integral component of intelligent network management.Considering the unique characteristics of edge networks,such as limited resources,complex network faults,and the need for high real-time performance,enhancing and optimizing existing network fault diagnosis methods is necessary.Therefore,this paper proposes the lightweight edge-side fault diagnosis approach based on a spiking neural network(LSNN).Firstly,we use the Izhikevich neurons model to replace the Leaky Integrate and Fire(LIF)neurons model in the LSNN model.Izhikevich neurons inherit the simplicity of LIF neurons but also possess richer behavioral characteristics and flexibility to handle diverse data inputs.Inspired by Fast Spiking Interneurons(FSIs)with a high-frequency firing pattern,we use the parameters of FSIs.Secondly,inspired by the connection mode based on spiking dynamics in the basal ganglia(BG)area of the brain,we propose the pruning approach based on the FSIs of the BG in LSNN to improve computational efficiency and reduce the demand for computing resources and energy consumption.Furthermore,we propose a multiple iterative Dynamic Spike Timing Dependent Plasticity(DSTDP)algorithm to enhance the accuracy of the LSNN model.Experiments on two server fault datasets demonstrate significant precision,recall,and F1 improvements across three diagnosis dimensions.Simultaneously,lightweight indicators such as Params and FLOPs significantly reduced,showcasing the LSNN’s advanced performance and model efficiency.To conclude,experiment results on a pair of datasets indicate that the LSNN model surpasses traditional models and achieves cutting-edge outcomes in network fault diagnosis tasks. 展开更多
关键词 network fault diagnosis edge networks Izhikevich neurons PRUNING dynamic spike timing dependent plasticity learning
下载PDF
Fault Diagnosis for Manifold Absolute Pressure Sensor(MAP) of Diesel Engine Based on Elman Neural Network Observer 被引量:17
2
作者 WANG Yingmin ZHANG Fujun +1 位作者 CUI Tao ZHOU Jinlong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期386-395,共10页
Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed... Intake system of diesel engine is a strong nonlinear system, and it is difficult to establish accurate model of intake system; and bias fault and precision degradation fault of MAP of diesel engine can't be diagnosed easily using model-based methods. Thus, a fault diagnosis method based on Elman neural network observer is proposed. By comparing simulation results of intake pressure based on BP network and Elman neural network, lower sampling error magnitude is gained using Elman neural network, and the error is less volatile. Forecast accuracy is between 0.015?0.017 5 and sample error is controlled within 0?0.07. Considering the output stability and complexity of solving comprehensively, Elman neural network with a single hidden layer and with 44 nodes is presented as intake system observer. By comparing the relations of confidence intervals of the residual value between the measured and predicted values, error variance and failures in various fault types. Then four typical MAP faults of diesel engine can be diagnosed: complete failure fault, bias fault, precision degradation fault and drift fault. The simulation results show: intake pressure is observable and selection of diagnostic strategy parameter reasonably can increase the accuracy of diagnosis;the proposed fault diagnosis method only depends on data and structural parameters of observer, not depends on the nonlinear model of air intake system. A fault diagnosis method is proposed not depending system model to observe intake pressure, and bias fault and precision degradation fault of MAP of diesel engine can be diagnosed based on residuals. 展开更多
关键词 neural network diesel engine intake system fault diagnosis threshold value
下载PDF
Fault diagnosis method of hydraulic system based on fusion of neural network and D-S evidence theory 被引量:2
3
作者 LIU Bao-jie YANG Qing-wen WU Xiang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第4期368-374,共7页
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e... According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS. 展开更多
关键词 multi sensor information fusion fault diagnosis D-S evidence theory BP neural network
下载PDF
Diagnosis of Intermittent Connections for DeviceNet 被引量:6
4
作者 LEI Yong DJURDJANOVIC Dragan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期606-612,共7页
An intermittent connection is one of the major problems that affect the network reliability and communication quality.However,little attention has been paid to the detection,analysis and localization of the intermitte... An intermittent connection is one of the major problems that affect the network reliability and communication quality.However,little attention has been paid to the detection,analysis and localization of the intermittent connections.Partially due to the limitations of the DeviceNet protocol,there is no effective online diagnostic tool available to identify the location of intermittent connection.On the basis of different DeviceNet fault scenarios induced by intermittent connections,a new graph-based diagnostic method is developed to analyze DeviceNet fault patterns,identify the corresponding fault scenarios,and infer the location of the intermittent connection problem by using passively captured network faults.A novel error source analysis tool,which integrates network data-link layer analysis and feature based network physical layer information,is developed to restore the snapshots of the network communication at each intermittent connection induced error.A graph based location identification method is developed to infer the location of the intermittent connections based on the restored error patterns.A 3-node laboratory test-bed,using master-slave polling communication method,is constructed to emulate the intermittent connection induced faults on the network drop cable by using digital switches,whose on/off states are controlled by a computer.During experiments,the network fault diagnosis is conducted by using information collected on trunk cable(backbone).Experimental study shows that the proposed method is effective to restore the snapshots of the network errors and locate the drop cable that experiences the intermittent connection problem. 展开更多
关键词 network fault diagnosis FIELDBUS DEVICENET intermittent connection
下载PDF
RESEARCH ON EXPERT SYSTEM OF FAULT DETECTION AND DIAGNOSING FOR PNEUMATIC SYSTEM OF AUTOMATIC PRODUCTION LINE
5
作者 Wang Xuanyin Gao Lei Tao GuoliangState Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,Hangzhou 310027, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第2期136-141,共6页
Fault detection and diagnosis for pneumatic system of automatic productionline are studied. An expert system using fuzzy-neural network and pneumatic circuit fault diagnosisinstrument are deigned. The mathematical mod... Fault detection and diagnosis for pneumatic system of automatic productionline are studied. An expert system using fuzzy-neural network and pneumatic circuit fault diagnosisinstrument are deigned. The mathematical model of various pneumatic faults and experimental deviceare built. In the end, some experiments are done, which shows that the expert system usingfuzzy-neural network can diagnose fast and truly fault of pneumatic circuit. 展开更多
关键词 Pneumatic assembly line Fuzzy-neural network fault diagnosis faultdetection expert system
下载PDF
CONDITION MONITOR OF DEEP-HOLE DRILLING BASED ON MULTI-SENSOR INFORMATION FUSION 被引量:7
6
作者 XU Xusong CAO Yanlong YANG Jiangxin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第1期140-142,共3页
A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless ... A condition monitoring method of deep-hole drilling based on multi-sensor information fusion is discussed. The signal of vibration and cutting force are collected when the condition of deep-hole drilling on stainless steel 0Cr17Ni4Cu4Nb is normal or abnormal. Four eigenvectors are extracted on time-domain and frequency-domain analysis of the signals. Then the four eigenvectors are combined and sent to neural networks to dispose. The fusion results indicate that multi-sensor information fusion is superior to single-sensor information, and that cutting force signal can reflect the condition of cutting tool better than vibration signal. 展开更多
关键词 Information fusion Neural networks Condition monitoring fault diagnosis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部