Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions su...Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.展开更多
Switzerland is one of the most desirable European destinations for Chinese tourists;therefore, a better understanding of Chinese tourists is essential for successful business practices. In China, the largest and leadi...Switzerland is one of the most desirable European destinations for Chinese tourists;therefore, a better understanding of Chinese tourists is essential for successful business practices. In China, the largest and leading social media platform—Sina Weibo, a hybrid of Twitter and Facebook—has more than 600 million users. Weibo’s great market penetration suggests that tourism operators and markets need to understand how to build effective and sustainable communications on Chinese social media platforms. In order to offer a better decision support platform to tourism destination managers as well as Chinese tourists, we proposed a framework using linked data on Sina Weibo. Linked Data is a term referring to using the Internet to connect related data. We will show how it can be used and how ontology can be designed to include the users’ context (e.g., GPS locations). Our framework will provide a good theoretical foundation for further understand Chinese tourists’ expectation, experiences, behaviors and new trends in Switzerland.展开更多
Network security has become more of a concern with the rapid growth and expansion of the Internet. While there are several ways to provide security in the application, transport, or network layers of a network, the da...Network security has become more of a concern with the rapid growth and expansion of the Internet. While there are several ways to provide security in the application, transport, or network layers of a network, the data link layer (Layer 2) security has not yet been adequately addressed. Data link layer protocols used in local area networks (LANs) are not designed with security features. Dynamic host configuration protocol (DHCP) is one of the most used network protocols for host configuration that works in data link layer. DHCP is vulnerable to a number of attacks, such as the DHCP rouge server attack, DHCP starvation attack, and malicious DHCP client attack. This work introduces a new scheme called Secure DHCP (S-DHCP) to secure DHCP protocol. The proposed solution consists of two techniques. The first is the authentication and key management technique that is used for entities authentication and management of security key. It is based on using Diffie-Hellman key exchange algorithm supported by the difficulty of Elliptic Curve Discrete Logarithm Problem (ECDLP) and a strong cryptographic one-way hash function. The second technique is the message authentication technique, which uses the digital signature to authenticate the DHCP messages exchanged between the clients and server.展开更多
文摘Wireless sensor networks (WSNs) have many potential applications [1,2] and unique challenges. They usually consist of hundreds or thousands of small sensor nodes such as MICA2, which operate autonomously;conditions such as cost, invisible deployment and many application domains, lead to small size and resource limited sensors [3]. WSNs are susceptible to many types of link layer attacks [1] and most of traditional network security techniques are unusable on WSNs [3];This is due to wireless and shared nature of communication channel, untrusted transmissions, deployment in open environments, unattended nature and limited resources [1]. Therefore security is a vital requirement for these networks;but we have to design a proper security mechanism that attends to WSN’s constraints and requirements. In this paper, we focus on security of WSNs, divide it (the WSNs security) into four categories and will consider them, include: an overview of WSNs, security in WSNs, the threat model on WSNs, a wide variety of WSNs’ link layer attacks and a comparison of them. This work enables us to identify the purpose and capabilities of the attackers;furthermore, the goal and effects of the link layer attacks on WSNs are introduced. Also, this paper discusses known approaches of security detection and defensive mechanisms against the link layer attacks;this would enable IT security managers to manage the link layer attacks of WSNs more effectively.
文摘Switzerland is one of the most desirable European destinations for Chinese tourists;therefore, a better understanding of Chinese tourists is essential for successful business practices. In China, the largest and leading social media platform—Sina Weibo, a hybrid of Twitter and Facebook—has more than 600 million users. Weibo’s great market penetration suggests that tourism operators and markets need to understand how to build effective and sustainable communications on Chinese social media platforms. In order to offer a better decision support platform to tourism destination managers as well as Chinese tourists, we proposed a framework using linked data on Sina Weibo. Linked Data is a term referring to using the Internet to connect related data. We will show how it can be used and how ontology can be designed to include the users’ context (e.g., GPS locations). Our framework will provide a good theoretical foundation for further understand Chinese tourists’ expectation, experiences, behaviors and new trends in Switzerland.
文摘Network security has become more of a concern with the rapid growth and expansion of the Internet. While there are several ways to provide security in the application, transport, or network layers of a network, the data link layer (Layer 2) security has not yet been adequately addressed. Data link layer protocols used in local area networks (LANs) are not designed with security features. Dynamic host configuration protocol (DHCP) is one of the most used network protocols for host configuration that works in data link layer. DHCP is vulnerable to a number of attacks, such as the DHCP rouge server attack, DHCP starvation attack, and malicious DHCP client attack. This work introduces a new scheme called Secure DHCP (S-DHCP) to secure DHCP protocol. The proposed solution consists of two techniques. The first is the authentication and key management technique that is used for entities authentication and management of security key. It is based on using Diffie-Hellman key exchange algorithm supported by the difficulty of Elliptic Curve Discrete Logarithm Problem (ECDLP) and a strong cryptographic one-way hash function. The second technique is the message authentication technique, which uses the digital signature to authenticate the DHCP messages exchanged between the clients and server.