期刊文献+
共找到515,866篇文章
< 1 2 250 >
每页显示 20 50 100
Security Monitoring and Management for the Network Services in the Orchestration of SDN-NFV Environment Using Machine Learning Techniques
1
作者 Nasser Alshammari Shumaila Shahzadi +7 位作者 Saad Awadh Alanazi Shahid Naseem Muhammad Anwar Madallah Alruwaili Muhammad Rizwan Abid Omar Alruwaili Ahmed Alsayat Fahad Ahmad 《Computer Systems Science & Engineering》 2024年第2期363-394,共32页
Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified ne... Software Defined Network(SDN)and Network Function Virtualization(NFV)technology promote several benefits to network operators,including reduced maintenance costs,increased network operational performance,simplified network lifecycle,and policies management.Network vulnerabilities try to modify services provided by Network Function Virtualization MANagement and Orchestration(NFV MANO),and malicious attacks in different scenarios disrupt the NFV Orchestrator(NFVO)and Virtualized Infrastructure Manager(VIM)lifecycle management related to network services or individual Virtualized Network Function(VNF).This paper proposes an anomaly detection mechanism that monitors threats in NFV MANO and manages promptly and adaptively to implement and handle security functions in order to enhance the quality of experience for end users.An anomaly detector investigates these identified risks and provides secure network services.It enables virtual network security functions and identifies anomalies in Kubernetes(a cloud-based platform).For training and testing purpose of the proposed approach,an intrusion-containing dataset is used that hold multiple malicious activities like a Smurf,Neptune,Teardrop,Pod,Land,IPsweep,etc.,categorized as Probing(Prob),Denial of Service(DoS),User to Root(U2R),and Remote to User(R2L)attacks.An anomaly detector is anticipated with the capabilities of a Machine Learning(ML)technique,making use of supervised learning techniques like Logistic Regression(LR),Support Vector Machine(SVM),Random Forest(RF),Naïve Bayes(NB),and Extreme Gradient Boosting(XGBoost).The proposed framework has been evaluated by deploying the identified ML algorithm on a Jupyter notebook in Kubeflow to simulate Kubernetes for validation purposes.RF classifier has shown better outcomes(99.90%accuracy)than other classifiers in detecting anomalies/intrusions in the containerized environment. 展开更多
关键词 Software defined network network function virtualization network function virtualization management and orchestration virtual infrastructure manager virtual network function Kubernetes Kubectl artificial intelligence machine learning
下载PDF
Research and Design of IPv6 Network Management and Operations Support System
2
作者 Chen Bin Ji Wenchong Qiu Zhonghui (China Network Communications Group Corporation, Beijing 100032, China) 《ZTE Communications》 2006年第1期16-20,共5页
IPv6 is the foundation of the development of Next Generation Internet (NGI). An IPv6 network management and operations support system is necessary for real operable NGI. Presently there are no approved standards yet a... IPv6 is the foundation of the development of Next Generation Internet (NGI). An IPv6 network management and operations support system is necessary for real operable NGI. Presently there are no approved standards yet and relevant equipment interfaces are not perfect. A Network Management System (NMS) at the network layer helps implement the integrated management of a network with equipment from multiple vendors, including the network resources and topology, end-to-end network performance, network failures and customer Service Level Agreement (SLA) management. Though the NMS will finally realize pure IPv6 network management, it must be accommodated to the management of relevant IPv4 equipment. Therefore, modularized and layered structure is adopted for the NMS in order to implement its smooth transition. 展开更多
关键词 work Research and Design of IPv6 network management and Operations Support System Design RFC IETF NMS MIB RMON NGI SNMP ICMP
下载PDF
Cyber Resilience through Real-Time Threat Analysis in Information Security
3
作者 Aparna Gadhi Ragha Madhavi Gondu +1 位作者 Hitendra Chaudhary Olatunde Abiona 《International Journal of Communications, Network and System Sciences》 2024年第4期51-67,共17页
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t... This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1]. 展开更多
关键词 Cybersecurity Information Security network Security Cyber Resilience Real-Time Threat Analysis Cyber Threats Cyberattacks Threat Intelligence Machine Learning Artificial Intelligence Threat Detection Threat Mitigation Risk Assessment Vulnerability management Incident Response Security Orchestration Automation Threat Landscape Cyber-Physical Systems Critical Infrastructure Data Protection Privacy Compliance Regulations Policy Ethics CYBERCRIME Threat Actors Threat Modeling Security Architecture
下载PDF
Neural Network-Powered License Plate Recognition System Design
4
作者 Sakib Hasan Md Nagib Mahfuz Sunny +1 位作者 Abdullah Al Nahian Mohammad Yasin 《Engineering(科研)》 2024年第9期284-300,共17页
The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The ... The development of scientific inquiry and research has yielded numerous benefits in the realm of intelligent traffic control systems, particularly in the realm of automatic license plate recognition for vehicles. The design of license plate recognition algorithms has undergone digitalization through the utilization of neural networks. In contemporary times, there is a growing demand for vehicle surveillance due to the need for efficient vehicle processing and traffic management. The design, development, and implementation of a license plate recognition system hold significant social, economic, and academic importance. The study aims to present contemporary methodologies and empirical findings pertaining to automated license plate recognition. The primary focus of the automatic license plate recognition algorithm was on image extraction, character segmentation, and recognition. The task of character segmentation has been identified as the most challenging function based on my observations. The license plate recognition project that we designed demonstrated the effectiveness of this method across various observed conditions. Particularly in low-light environments, such as during periods of limited illumination or inclement weather characterized by precipitation. The method has been subjected to testing using a sample size of fifty images, resulting in a 100% accuracy rate. The findings of this study demonstrate the project’s ability to effectively determine the optimal outcomes of simulations. 展开更多
关键词 Intelligent Traffic Control Systems Automatic License Plate Recognition (ALPR) Neural networks Vehicle Surveillance Traffic management License Plate Recognition Algorithms Image Extraction Character Segmentation Character Recognition Low-Light Environments Inclement Weather Empirical Findings Algorithm Accuracy Simulation Outcomes DIGITALIZATION
下载PDF
Application of Convolutional Neural Networks in Classification of GBM for Enhanced Prognosis
5
作者 Rithik Samanthula 《Advances in Bioscience and Biotechnology》 CAS 2024年第2期91-99,共9页
The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat... The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness. 展开更多
关键词 GLIOBLASTOMA Machine Learning Artificial Intelligence Neural networks Brain Tumor Cancer Tensorflow LAYERS CYTOARCHITECTURE Deep Learning Deep Neural network Training Batches
下载PDF
Stochastic Design of Enhanced Network Management Architecture and Algorithmic Implementations 被引量:1
6
作者 Song-Kyoo Kim 《American Journal of Operations Research》 2013年第1期87-93,共7页
The paper is focused on available server management in Internet connected network environments. The local backup servers are hooked up by LAN and replace broken main server immediately and several different types of b... The paper is focused on available server management in Internet connected network environments. The local backup servers are hooked up by LAN and replace broken main server immediately and several different types of backup servers are also considered. The remote backup servers are hooked up by VPN (Virtual Private Network) with high-speed optical network. A Virtual Private Network (VPN) is a way to use a public network infrastructure and hooks up long-distance servers within a single network infrastructure. The remote backup servers also replace broken main severs immediately under the different conditions with local backups. When the system performs a mandatory routine maintenance of main and local backup servers, auxiliary servers from other location are being used for backups during idle periods. Analytically tractable results are obtained by using several mathematical techniques and the results are demonstrated in the framework of optimized networked server allocation problems. The operational workflow give the guidelines for the actual implementations. 展开更多
关键词 STOCHASTIC network management N-POLICY CLOSED QUEUE Algorithmic Implementation STOCHASTIC Optimization
下载PDF
Light-Weight Simple Network Management Protocol in Wireless Sensor Networks 被引量:2
7
作者 高德云 朱婉婷 方然 《China Communications》 SCIE CSCD 2011年第8期121-129,共9页
A Light-Weight Simple Network Management Protocol (LW-SNMP) for the wireless sensor network is proposed, which is a kind of hierarchical network management system including a sink manager, cluster proxies, and node ag... A Light-Weight Simple Network Management Protocol (LW-SNMP) for the wireless sensor network is proposed, which is a kind of hierarchical network management system including a sink manager, cluster proxies, and node agents. Considering the resource limitations on the sensor nodes, we design new management messages, new data types and new management information base completely. The management messages between the cluster proxy and node agents are delivered as normal data packets. The experiment results show that LW-SNMP can meet the management demands in the resource-limited wireless sensor networks and has a good performance in stability, effectiveness of memory, extensibility than the traditional Simple Network Management Protocol (SNMP). 展开更多
关键词 WSNS network management lightweight simple network management protocol sink manager cluster proxy node agent
下载PDF
Semantic model and optimization of creative processes at mathematical knowledge formation
8
作者 Victor Egorovitch Firstov 《Natural Science》 2010年第8期915-922,共8页
The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the ... The aim of this work is mathematical education through the knowledge system and mathematical modeling. A net model of formation of mathematical knowledge as a deductive theory is suggested here. Within this model the formation of deductive theory is represented as the development of a certain informational space, the elements of which are structured in the form of the orientated semantic net. This net is properly metrized and characterized by a certain system of coverings. It allows injecting net optimization parameters, regulating qualitative aspects of knowledge system under consideration. To regulate the creative processes of the formation and realization of mathematical know- edge, stochastic model of formation deductive theory is suggested here in the form of branching Markovian process, which is realized in the corresponding informational space as a semantic net. According to this stochastic model we can get correct foundation of criterion of optimization creative processes that leads to “great main points” strategy (GMP-strategy) in the process of realization of the effective control in the research work in the sphere of mathematics and its applications. 展开更多
关键词 The Cybernetic Conception Optimization of CONTROL Quantitative And Qualitative Information Measures Modelling Intellectual Systems Neural network MATHEMATICAL Education The CONTROL of Pedagogical PROCESSES CREATIVE Pedagogics Cognitive And CREATIVE PROCESSES Informal Axiomatic Thery SEMANTIC NET NET Optimization Parameters The Topology of SEMANTIC NET Metrization The System of Coverings Stochastic Model of CREATIVE PROCESSES At The Formation of MATHEMATICAL Knowledge Branching Markovian Process Great Main Points Strategy (GMP-Strategy) of The CREATIVE PROCESSES CONTROL Interdisciplinary Learning: Colorimetric Barycenter
下载PDF
Using Neural Networks to Predict Secondary Structure for Protein Folding 被引量:1
9
作者 Ali Abdulhafidh Ibrahim Ibrahim Sabah Yasseen 《Journal of Computer and Communications》 2017年第1期1-8,共8页
Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate predi... Protein Secondary Structure Prediction (PSSP) is considered as one of the major challenging tasks in bioinformatics, so many solutions have been proposed to solve that problem via trying to achieve more accurate prediction results. The goal of this paper is to develop and implement an intelligent based system to predict secondary structure of a protein from its primary amino acid sequence by using five models of Neural Network (NN). These models are Feed Forward Neural Network (FNN), Learning Vector Quantization (LVQ), Probabilistic Neural Network (PNN), Convolutional Neural Network (CNN), and CNN Fine Tuning for PSSP. To evaluate our approaches two datasets have been used. The first one contains 114 protein samples, and the second one contains 1845 protein samples. 展开更多
关键词 Protein Secondary Structure Prediction (PSSP) NEURAL network (NN) Α-HELIX (H) Β-SHEET (E) Coil (C) Feed Forward NEURAL network (FNN) Learning Vector Quantization (LVQ) Probabilistic NEURAL network (PNN) Convolutional NEURAL network (CNN)
下载PDF
Structural and functional connectivity of the whole brain and subnetworks in individuals with mild traumatic brain injury:predictors of patient prognosis
10
作者 Sihong Huang Jungong Han +4 位作者 Hairong Zheng Mengjun Li Chuxin Huang Xiaoyan Kui Jun Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1553-1558,共6页
Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u... Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury. 展开更多
关键词 cognitive function CROSS-SECTION FOLLOW-UP functional connectivity graph theory longitudinal study mild traumatic brain injury prediction small-worldness structural connectivity subnetworks whole brain network
下载PDF
Intelligent Load Management Scheme for a Residential Community in Smart Grids Network Using Fair Emergency Demand Response Programs
11
作者 Muhammad Ali Z.A. Zaidi +3 位作者 Qamar Zia Kamal Haider Amjad Ullah Muhammad Asif 《Energy and Power Engineering》 2012年第5期339-348,共10页
In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy m... In the framework of liberalized deregulated electricity market, dynamic competitive environment exists between wholesale and retail dealers for energy supplying and management. Smart Grids topology in form of energy management has forced power supplying agencies to become globally competitive. Demand Response (DR) Programs in context with smart energy network have influenced prosumers and consumers towards it. In this paper Fair Emergency Demand Response Program (FEDRP) is integrated for managing the loads intelligently by using the platform of Smart Grids for Residential Setup. The paper also provides detailed modelling and analysis of respective demands of residential consumers in relation with economic load model for FEDRP. Due to increased customer’s partaking in this program the load on the utility is reduced and managed intelligently during emergency hours by providing fair and attractive incentives to residential clients, thus shifting peak load to off peak hours. The numerical and graphical results are matched for intelligent load management scenario. 展开更多
关键词 DEMAND RESPONSE (DR) FAIR EMERGENCY DEMAND RESPONSE Program (FEDRP) Intelligent Load management (ILM) RESIDENTIAL Area networks (RAN) Smart Grids
下载PDF
An Auto-Configuration of 4M Group Management Using Wireless Sensor Networks
12
作者 Suk-Keun Cha Jeong-Hoon Lee +4 位作者 Han Gyu Kim Joon Jae Yoo Jung Hoon Kang Dong Hoon Kim Jun Yeob Song 《Wireless Sensor Network》 2010年第5期402-410,共9页
The first tier of automotive manufacturers has faced to pressures about move, modify, updating tasks for manufacturing resources in production processes from demand response of production order sequence for motor comp... The first tier of automotive manufacturers has faced to pressures about move, modify, updating tasks for manufacturing resources in production processes from demand response of production order sequence for motor company and process innovation purpose for productivity. For meets this requirements, it has to require absolutely lead time to re-wiring of physical interface for production equipment, needs for change existing program and test over again. For prepare this constraints, it needs studying an auto-configuration functions that build for both visibility and flexibility based on the 4M (Man, Machine, Material, Method) group management which is supports from WSN (Wireless Sensor Network) of the open embedded device called M2M (Machine to Machine) and major functions of middleware including point manager for real-time device communication, real-time data management, Standard API (Application Program Interface) and application template management. To be application system to RMS (Reconfigurable Manufacturing System) for rapidly response from various orders and model from motor company that is beginning to establishing the mapping of manufacturing resources of 4M using WSN. 展开更多
关键词 Auto-Configuration Wireless Sensor network RECONFIGURABLE Production Resoureces of 4M TINYOS Machien to MACHINE MIDDLEWARE Application TEMPLATE MANAGER
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
13
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
Performance comparison of three artificial neural network methods for classification of electroencephalograph signals of five mental tasks
14
作者 Vijay Khare Jayashree Santhosh +1 位作者 Sneh Anand Manvir Bhatia 《Journal of Biomedical Science and Engineering》 2010年第2期200-205,共6页
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electr... In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In MLP-BP NN five training methods used were a) Gradient Descent Back Propagation b) Levenberg-Marquardt c) Resilient Back Propagation d) Conjugate Learning Gradient Back Propagation and e) Gradient Descent Back Propagation with movementum. 展开更多
关键词 ELECTROENCEPHALOGRAM (EEG) Wavelet Packet Transform (WPT) Support Vector Machine (SVM) Radial Basis Function NEURAL network (RBFNN) Multilayer Back Propagation NEURAL network (MLP-BPNN) Brain Computer Interface (BCI)
下载PDF
A Fuzzy Trust Management Mechanism with Dynamic Behavior Monitoring for Wireless Sensor Networks
15
作者 Fu Shiming Zhang Ping Shi Xuehong 《China Communications》 SCIE CSCD 2024年第5期177-189,共13页
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul... Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring. 展开更多
关键词 behavior monitoring CLOUD FUZZY TRUST wireless sensor networks
下载PDF
Epileptic brain network mechanisms and neuroimaging techniques for the brain network
16
作者 Yi Guo Zhonghua Lin +1 位作者 Zhen Fan Xin Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2637-2648,共12页
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d... Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions. 展开更多
关键词 electrophysiological techniques EPILEPSY functional brain network functional magnetic resonance imaging functional near-infrared spectroscopy machine leaning molecular imaging neuroimaging techniques structural brain network virtual epileptic models
下载PDF
Cognitive Network Management in Internet of Things 被引量:5
17
作者 覃毅芳 沈强 +4 位作者 林涛 赵志军 唐晖 慈松 冯志勇 《China Communications》 SCIE CSCD 2011年第1期1-7,共7页
The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, wh... The wide variety of smart embedded computing devices and their increasing number of applications in our daily life have created new op- portunities to acquire knowledge from the physical world anytime and anywhere, which is envisioned as the"Internet of Things" (IoT). Since a huge number of heterogeneous resources are brought in- to IoT, one of the main challenges is how to effi- ciently manage the increasing complexity of IoT in a scalable, flexNle, and autonomic way. Further- more, the emerging IoT applications will require collaborations among loosely coupled devices, which may reside in various locations of the Inter- net. In this paper, we propose a new IoT network management architecture based on cognitive net- work management technology and Service-Orien- ted Architecture to provide effective and efficient network management of loT. 展开更多
关键词 cognitive network management Serv- ice-Oriented Architecture SOA Internet of Things policy-based network management
下载PDF
New “Intellectual Networks” (Smart Grid) for Detecting Electrical Equipment Faults, Defects and Weaknesses
18
作者 Alexander Yu. Khrennikov 《Smart Grid and Renewable Energy》 2012年第3期159-164,共6页
The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were prop... The most important elements of “intellectual networks” (Smart Grid) are the systems of monitoring the parameters of electrical equipment. Information-measuring systems (IMS), which described in this paper, were proposed to use together with rapid digital protection against short-circuit regimes in transformer windings. This paper presents an application’s experience of LVI-testing, some results of the use of Frequency Response Analysis (FRA) to check the condition of transformer windings and infra-red control results of electrical equipment. The LVI method and short-circuit inductive reactance measurements are sensitive for detecting such faults as radial, axial winding deformations, a twisting of low-voltage or regulating winding, a losing of winding’s pressing and others. 展开更多
关键词 INTELLECTUAL networkS Smart Grid Monitoring SYSTEM Electrical Equipment Information-Measuring SYSTEM Frequency Response Analysis Transformer WINDING Fault Diagnostic Low Voltage Impulse Method SHORT-CIRCUIT Inductive REACTANCE Measurement
下载PDF
The Fiber Protection Method for Network Management System by APS Scheme
19
作者 Jih-Hsin Ho 《通讯和计算机(中英文版)》 2013年第10期1329-1332,共4页
关键词 APS SONET
下载PDF
Network Management of Food Additives Quality Analysis and Inspection 被引量:3
20
作者 Hairui Zhang Guofu Zhang Li Zhang 《Journal of Chemistry and Chemical Engineering》 2015年第7期468-471,共4页
In this paper, on the basis of the implementation of the national chemical industry standard analytical test methods and analysis of test items, a food additive quality analysis and inspection of network management ap... In this paper, on the basis of the implementation of the national chemical industry standard analytical test methods and analysis of test items, a food additive quality analysis and inspection of network management applications are developed using the development technology of Visual Basic language and computer system operating environment, to achieve a network management software for users on food additives of quality analytical testing. The software sets up an information sharing network platform for enterprise and quality management departments, which is a major innovation in the food additive quality analysis on test management methods and tools. 展开更多
关键词 Food additives quality analysis Visual Basic language network management software development.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部