In view of the poor information integrity of the 3D model used to make the indoor road network and the lack of versatility of the constructed indoor road network, a method for building an indoor navigation network mod...In view of the poor information integrity of the 3D model used to make the indoor road network and the lack of versatility of the constructed indoor road network, a method for building an indoor navigation network model that can be seamlessly connected with outdoor paths is proposed in this paper. First, the IFC model is converted to the CityGML model using the BIM model as the indoor data source. Then, using GIS technology and limited Delaunay triangulation refinement algorithm, the necessary elements of indoor navigate on network model such as semantic information, geometric information and topological relationship contained in CityGML model are extracted. Finally, it is visualized and verified based on experimental model data. The results show that the indoor navigation network model constructed based on the CityGML model can accurately perform indoor navigation, make the constructed road network more general, and provide reference and technical support for the integrated construction of indoor and outdoor road network models.展开更多
At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System sat...At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was展开更多
The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention....The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development.展开更多
Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, n...In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles.展开更多
文摘In view of the poor information integrity of the 3D model used to make the indoor road network and the lack of versatility of the constructed indoor road network, a method for building an indoor navigation network model that can be seamlessly connected with outdoor paths is proposed in this paper. First, the IFC model is converted to the CityGML model using the BIM model as the indoor data source. Then, using GIS technology and limited Delaunay triangulation refinement algorithm, the necessary elements of indoor navigate on network model such as semantic information, geometric information and topological relationship contained in CityGML model are extracted. Finally, it is visualized and verified based on experimental model data. The results show that the indoor navigation network model constructed based on the CityGML model can accurately perform indoor navigation, make the constructed road network more general, and provide reference and technical support for the integrated construction of indoor and outdoor road network models.
文摘At 4:50 on April 30, China's LM-3B/I rocket, an improved type based on LM-3B, made its debut at the Xichang Satellite Launch Center and successfully sending the 12th and 13th BeiDou Navigation Satellite System satellites into the planned transfer orbit in space. It was the first time that China launched two BeiDou satellites with one rocket. It was
基金National Natural Science foundations of China(Nos.61032004,91338201,and 61231011)National High Technology Research and Development Program of China(863 Program)(No.2012AA121605)
文摘The ability of the monolithic satellite,satellite orbit(especially GEO),and radio resource are very limited,so the development of distributed satellite cluster network(DSCN) receives more and more worldwide attention.In this paper,DSCN is surveyed and the study status of DSCN architecture design is summarized.The formation flying of spacecrafts,reconfiguration,networking,and applied research on distributed satellite spacecraft are described in detail.The DSCN will provide a great technology innovation for space information network,satellite communications,satellite navigation,deep space exploration,and space remote sensing.In addition,this paper points out future trends of the DSCN development.
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
文摘In the present work, autonomous mobile robot(AMR) system is intended with basic behaviour, one is obstacle avoidance and the other is target seeking in various environments. The AMR is navigated using fuzzy logic, neural network and adaptive neurofuzzy inference system(ANFIS) controller with safe boundary algorithm. In this method of target seeking behaviour, the obstacle avoidance at every instant improves the performance of robot in navigation approach. The inputs to the controller are the signals from various sensors fixed at front face, left and right face of the AMR. The output signal from controller regulates the angular velocity of both front power wheels of the AMR. The shortest path is identified using fuzzy, neural network and ANFIS techniques with integrated safe boundary algorithm and the predicted results are validated with experimentation. The experimental result has proven that ANFIS with safe boundary algorithm yields better performance in navigation, in particular with curved/irregular obstacles.