The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be ...The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be achieved by evaluating the current state of groundwater resources (GWR) exploitation, use and dynamics;setting-up, calibrating and validating the ANN;and then predicting GWLs at different lead times. The results show that GWLs in the study area have been found to reduce rapidly from 2000 to 2015, especially in the Middle-upper Pleistocene (qp2-3) and upper Pleistocene (qp3) due to the over-withdrawals from the enterprises for production purposes. Concerning this problem, an Official Letter of the People’s Committee of Can Tho City was issued and taken into enforcement in 2012 resulting in the reduction of exploitation. The calibrated ANN structures have successfully demonstrated that the GWLs can be predicted considering different impact factors. The predicted results will help to raise awareness and to draw an attention of the local/central government for a clear GWR management policy for the Mekong delta, especially the industrial zones in the urban areas such as Can Tho city.展开更多
In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communicat...In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.展开更多
Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and...Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and the data delay increases dramatically. With the advent of optical router, the traditional electrical interconnection mode has changed to optical interconnection mode. In the packet switched optical interconnection network, the data communication mechanism consists of 3 processes: link establishment, data transmission and link termination, but the circuit-switched data transmission method greatly limits the utilization of resources. The number of micro-ring resonators in the on-chip large-scale optical interconnect network is an important parameter affecting the insertion loss. The proposed λ-route, GWOR, Crossbar structure has a large overall network insertion loss due to the use of many micro-ring resonators. How to use the least micro-ring resonator to realize non-blocking communication between multiple cores has been a research hotspot. In order to improve bandwidth and reduce access latency, an optical interconnection structure called multilevel switching optical network on chip(MSONoC) is proposed in this paper. The broadband micro-ring resonators(BMRs) are employed to reduce the number of micro-ring resonators(MRs) in the network, and the structure can provide the service of non-blocking point to point communication with the wavelength division multiplexing(WDM) technology. The results show that compared to λ-route, GWOR, Crossbar and the new topology structure, the number of micro-ring resonators of MSONoC are reduced by 95.5%, 95.5%, 87.5%, and 60% respectively. The insertion loss of the minimum link of new topology, mesh and MSONoC structure is 0.73 dB, 0.725 dB and 0.38 dB.展开更多
A dual-channel access mechanism to overcome the drawback of traditional single-channel access mechanism for network-on-chip (NoC) is proposed. In traditional single-channel access mechanism, every Internet protocol ...A dual-channel access mechanism to overcome the drawback of traditional single-channel access mechanism for network-on-chip (NoC) is proposed. In traditional single-channel access mechanism, every Internet protocol (IP) has only one chan- nel to access the on-chip network. When the network is relatively idle, the injection rate is too small to make good use of the network resource. When the network is relatively busy, the ejection rate is so small that the packets in the network cannot leave immediately, and thus the probability of congestion is increased. In the dual-channel access mechanism, the injection rate of IP and the ejection rate of the network are increased by using two optional channels in network interface (NI) and local port of routers. Therefore, the communication performance is improved. Experimental results show that compared with traditional single-channel access mechanism, the proposed scheme greatly increases the throughput and cuts down the average latency with reasonable area increase.展开更多
This paper introduces Twist-routing, a new routing algorithm for faulty on-chip networks, which improves Maze-routing, a face-routing based algorithm which uses deflections in routing, and archives full fault coverage...This paper introduces Twist-routing, a new routing algorithm for faulty on-chip networks, which improves Maze-routing, a face-routing based algorithm which uses deflections in routing, and archives full fault coverage and fast packet delivery. To build Twist-routing algorithm, we use bounding circles, which borrows the idea from GOAFR+ routing algorithm for ad-hoc wireless networks. Unlike Maze-routing, whose path length is unbounded even when the optimal path length is fixed, in Twist-routing, the path length is bounded by the cube of the optimal path length. Our evaluations show that Twist-routing algorithm delivers packets up to 35% faster than Maze-routing with a uniform traffic and Erdos-Rényi failure model, when the failure rate and the injection rate vary.展开更多
采用模块化方法对集中式仲裁共享总线和二维网格片上网络(Network on Chip,NoC)的硬件开销和延迟进行了数学上的分析。在此基础上,通过可综合Verilog代码对这两种片上通信结构在RTL级进行描述,并建立了这两种通信方式的周期准确级的功...采用模块化方法对集中式仲裁共享总线和二维网格片上网络(Network on Chip,NoC)的硬件开销和延迟进行了数学上的分析。在此基础上,通过可综合Verilog代码对这两种片上通信结构在RTL级进行描述,并建立了这两种通信方式的周期准确级的功能验证和性能分析环境。结果表明,在同样工艺条件下,共享总线的面积与NoC相比相当小;但对于大规模片上系统通信,NoC的吞吐效率及带宽明显优于共享总线。展开更多
文摘The objective of this study is to predict groundwater levels (GWLs) under different impact factors using Artificial Neural Network (ANN) for a case study in Tra Noc Industrial Zone, Can Tho City, Vietnam. This can be achieved by evaluating the current state of groundwater resources (GWR) exploitation, use and dynamics;setting-up, calibrating and validating the ANN;and then predicting GWLs at different lead times. The results show that GWLs in the study area have been found to reduce rapidly from 2000 to 2015, especially in the Middle-upper Pleistocene (qp2-3) and upper Pleistocene (qp3) due to the over-withdrawals from the enterprises for production purposes. Concerning this problem, an Official Letter of the People’s Committee of Can Tho City was issued and taken into enforcement in 2012 resulting in the reduction of exploitation. The calibrated ANN structures have successfully demonstrated that the GWLs can be predicted considering different impact factors. The predicted results will help to raise awareness and to draw an attention of the local/central government for a clear GWR management policy for the Mekong delta, especially the industrial zones in the urban areas such as Can Tho city.
基金Supported by the National High Technology Research and Development Program of China(No.2009AA01Z105)the Ministry of EducationIntel Special Foundation for Information Technology(No.MOE-INTEL-08-05)the Postdoctoral Science Foundation of China(No.20080440942,200902432)
文摘In the complex multicore chip system,network on-chip(NoC)is viewed as a kind of system interconnection that can substitute the traditional interconnect networks,which will improve the system performance and communication efficiency.With regard to the complex and large scale NoC,simple and efficient routing nodes are the critical factors to achieve low-cost and low-congestion communication performance.This paper proposes an unbuffered switch architecture and makes detailed analysis of the mechanism of buffer in the switch architecture.According to the simulation results,the S-mesh using the unbuffered switch architecture is better in terms of the optimal performance in message latency than some typical NoC architectures,such as 2D-mesh,Fat-tree,Butterfly,Octagon and so on.The synthesis results of design compiler indicate that the unbuffered switch has obvious advantages of achieving cost and operating speed for the chips.
基金Supported by the National Natural Science Foundation of China(No.61834005,61772417,61802304,61602377,61634004)Shaanxi Provincial Co-ordination Innovation Project of Science and Technology(No.2016KTZDGY02-04-02)+1 种基金Shaanxi Provincial Key R&D Plan(No.2017GY-060)Shaanxi International Science and Technology Cooperation Program(No.2018KW-006).
文摘Electric router is widely used for multi-core system to interconnect each other. However, with the increasing number of processor cores, the probability of communication conflict between processor cores increases, and the data delay increases dramatically. With the advent of optical router, the traditional electrical interconnection mode has changed to optical interconnection mode. In the packet switched optical interconnection network, the data communication mechanism consists of 3 processes: link establishment, data transmission and link termination, but the circuit-switched data transmission method greatly limits the utilization of resources. The number of micro-ring resonators in the on-chip large-scale optical interconnect network is an important parameter affecting the insertion loss. The proposed λ-route, GWOR, Crossbar structure has a large overall network insertion loss due to the use of many micro-ring resonators. How to use the least micro-ring resonator to realize non-blocking communication between multiple cores has been a research hotspot. In order to improve bandwidth and reduce access latency, an optical interconnection structure called multilevel switching optical network on chip(MSONoC) is proposed in this paper. The broadband micro-ring resonators(BMRs) are employed to reduce the number of micro-ring resonators(MRs) in the network, and the structure can provide the service of non-blocking point to point communication with the wavelength division multiplexing(WDM) technology. The results show that compared to λ-route, GWOR, Crossbar and the new topology structure, the number of micro-ring resonators of MSONoC are reduced by 95.5%, 95.5%, 87.5%, and 60% respectively. The insertion loss of the minimum link of new topology, mesh and MSONoC structure is 0.73 dB, 0.725 dB and 0.38 dB.
基金supported by the High Technology Research and Development Program of Fujian Province(2010HZ0004-1,2009HZ0003-1)
文摘A dual-channel access mechanism to overcome the drawback of traditional single-channel access mechanism for network-on-chip (NoC) is proposed. In traditional single-channel access mechanism, every Internet protocol (IP) has only one chan- nel to access the on-chip network. When the network is relatively idle, the injection rate is too small to make good use of the network resource. When the network is relatively busy, the ejection rate is so small that the packets in the network cannot leave immediately, and thus the probability of congestion is increased. In the dual-channel access mechanism, the injection rate of IP and the ejection rate of the network are increased by using two optional channels in network interface (NI) and local port of routers. Therefore, the communication performance is improved. Experimental results show that compared with traditional single-channel access mechanism, the proposed scheme greatly increases the throughput and cuts down the average latency with reasonable area increase.
文摘This paper introduces Twist-routing, a new routing algorithm for faulty on-chip networks, which improves Maze-routing, a face-routing based algorithm which uses deflections in routing, and archives full fault coverage and fast packet delivery. To build Twist-routing algorithm, we use bounding circles, which borrows the idea from GOAFR+ routing algorithm for ad-hoc wireless networks. Unlike Maze-routing, whose path length is unbounded even when the optimal path length is fixed, in Twist-routing, the path length is bounded by the cube of the optimal path length. Our evaluations show that Twist-routing algorithm delivers packets up to 35% faster than Maze-routing with a uniform traffic and Erdos-Rényi failure model, when the failure rate and the injection rate vary.
文摘采用模块化方法对集中式仲裁共享总线和二维网格片上网络(Network on Chip,NoC)的硬件开销和延迟进行了数学上的分析。在此基础上,通过可综合Verilog代码对这两种片上通信结构在RTL级进行描述,并建立了这两种通信方式的周期准确级的功能验证和性能分析环境。结果表明,在同样工艺条件下,共享总线的面积与NoC相比相当小;但对于大规模片上系统通信,NoC的吞吐效率及带宽明显优于共享总线。