In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytica...The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.展开更多
A novel low-complexity framework for designing survivable optical mesh networks with undetermined topology is presented. By jointly optimizing the topology planning, working- and spare-capacity planning, a cost saving...A novel low-complexity framework for designing survivable optical mesh networks with undetermined topology is presented. By jointly optimizing the topology planning, working- and spare-capacity planning, a cost saving of over 40% can be achieved for a national-scale network with 31 nodes.展开更多
Improving maternal health is one of the Sustainable Development Goals.Hospital service areas(HSAs),which contain most hospitalization behaviors at the local scale,are crucial for health care planning.However,little at...Improving maternal health is one of the Sustainable Development Goals.Hospital service areas(HSAs),which contain most hospitalization behaviors at the local scale,are crucial for health care planning.However,little attention has been given to HSAs for maternal care and the hierarchy structure.Considering Hubei,central China,as a case study,this study aims to fill these gaps by developing a method for delineating hierarchical HSAs for maternal care using a network optimization approach.The approach is driven by actual patient flow data and has an explicit objective to maximize the modularity.It also establishes the hierarchical structure of maternal care HSAs,which is fundamental for the planning of hierarchical maternal care and referral systems.In our case study,45 secondary HSAs and 22tertiary HSAs are delineated to achieve maximal modularity.The HSAs perform well in terms of indices such as the Localization Index and Market Share Index.Furthermore,there is a complementary relationship between secondary and tertiary hospitals,which suggests the need for referral system planning.This study can provide evidence for the validity of the HSA and the planning of maternal care HSAs in China.It also provides transferable methods for planning hierarchical HSAs in other developing countries.展开更多
In the traditional methods of program evaluation and review technique (PERT) network optimization and compression of time limit for project, the uncertainty of free time difference and total time difference were not...In the traditional methods of program evaluation and review technique (PERT) network optimization and compression of time limit for project, the uncertainty of free time difference and total time difference were not considered as well as its time risk. The authors of this paper use the theory of dependent-chance programming to establish a new model about compression of time for project and multi-objective network optimization, which can overcome the shortages of traditional methods and realize the optimization of PERT network directly. By calculating an example with genetic algorithms, the following conclusions are drawn: ( 1 ) compression of time is restricted by cost ratio and completion probability of project; (2) activities with maximal standard difference of duration and minimal cost will be compressed in order of precedence; (3) there is no optimal solutions but noninferior solutions between chance and cost, and the most optimal node time depends on decision-maker's preference.展开更多
Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has ...Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.展开更多
Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration...Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.展开更多
Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective funct...Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.展开更多
We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the s...We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.展开更多
In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation pr...In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.展开更多
The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modelin...The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).展开更多
To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furtherm...To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furthermore,the impurity remover, hydrogen distribution, compressor and pipe setting are included in the model. Based on this model, the impurity and source(s) that are in higher priority for impurity removal, the optimal targeted concentration, and the hydrogen network with the minimum annual cost can be identified. The efficiency of the proposed model is verified by a case study.展开更多
Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One ...Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.展开更多
In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF n...In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.展开更多
The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how...The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning(RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.展开更多
By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of ...By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of the simulated annealing algorithm used in the hybrid method as general as possible, the nonlinear programming neural network is employed at each iteration to find only a feasible solution to the original constrained problem rather than a local optimal solution. Such a feasible solution is obtained by solving an auxiliary optimization problem with a new objective function. The computational results for two numerical examples indicate that the proposed hybrid method for constrained global optimization is not only highly reliable but also much more effcient than the simulated annealing algorithm using the penalty function method to deal with the constraints.展开更多
In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity,...In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators.展开更多
Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsu...Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.展开更多
Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions...Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.展开更多
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general effic...In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.展开更多
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
基金Project(60873081)supported by the National Natural Science Foundation of ChinaProject(NCET-10-0787)supported by Program for New Century Excellent Talents in UniversityProject(11JJ1012)supported by the Natural Science Foundation of Hunan Province,China
文摘The optimization of network performance in a movement-assisted data gathering scheme was studied by analyzing the energy consumption of wireless sensor network with node uniform distribution. A theoretically analytical method for avoiding energy hole was proposed. It is proved that if the densities of sensor nodes working at the same time are alternate between dormancy and work with non-uniform node distribution. The efficiency of network can increase by several times and the residual energy of network is nearly zero when the network lifetime ends.
文摘A novel low-complexity framework for designing survivable optical mesh networks with undetermined topology is presented. By jointly optimizing the topology planning, working- and spare-capacity planning, a cost saving of over 40% can be achieved for a national-scale network with 31 nodes.
基金National Natural Science Foundation of China,No.41671497。
文摘Improving maternal health is one of the Sustainable Development Goals.Hospital service areas(HSAs),which contain most hospitalization behaviors at the local scale,are crucial for health care planning.However,little attention has been given to HSAs for maternal care and the hierarchy structure.Considering Hubei,central China,as a case study,this study aims to fill these gaps by developing a method for delineating hierarchical HSAs for maternal care using a network optimization approach.The approach is driven by actual patient flow data and has an explicit objective to maximize the modularity.It also establishes the hierarchical structure of maternal care HSAs,which is fundamental for the planning of hierarchical maternal care and referral systems.In our case study,45 secondary HSAs and 22tertiary HSAs are delineated to achieve maximal modularity.The HSAs perform well in terms of indices such as the Localization Index and Market Share Index.Furthermore,there is a complementary relationship between secondary and tertiary hospitals,which suggests the need for referral system planning.This study can provide evidence for the validity of the HSA and the planning of maternal care HSAs in China.It also provides transferable methods for planning hierarchical HSAs in other developing countries.
文摘In the traditional methods of program evaluation and review technique (PERT) network optimization and compression of time limit for project, the uncertainty of free time difference and total time difference were not considered as well as its time risk. The authors of this paper use the theory of dependent-chance programming to establish a new model about compression of time for project and multi-objective network optimization, which can overcome the shortages of traditional methods and realize the optimization of PERT network directly. By calculating an example with genetic algorithms, the following conclusions are drawn: ( 1 ) compression of time is restricted by cost ratio and completion probability of project; (2) activities with maximal standard difference of duration and minimal cost will be compressed in order of precedence; (3) there is no optimal solutions but noninferior solutions between chance and cost, and the most optimal node time depends on decision-maker's preference.
基金co-supported by the National Natural Science Foundation of China(No.61304190)the Natural Science Foundation of Jiangsu Province(No.BK20130818)the Fundamental Research Funds for the Central Universities of China(No.NJ20150030)
文摘Air route network optimization,one of the essential parts of the airspace planning,is an effective way to optimize airspace resources,increase airspace capacity,and alleviate air traffic congestion.However,little has been done on the optimization of air route network in the fragmented airspace caused by prohibited,restricted,and dangerous areas(PRDs).In this paper,an air route network optimization model is developed with the total operational cost as the objective function while airspace restriction,air route network capacity,and non-straight-line factors(NSLF) are taken as major constraints.A square grid cellular space,Moore neighbors,a fixed boundary,together with a set of rules for solving the route network optimization model are designed based on cellular automata.The empirical traffic of airports with the largest traffic volume in each of the 9 flight information regions in China's Mainland is collected as the origin-destination(OD) airport pair demands.Based on traffic patterns,the model generates 35 air routes which successfully avoids 144 PRDs.Compared with the current air route network structure,the number of nodes decreases by 41.67%,while the total length of flight segments and air routes drop by 32.03% and 5.82% respectively.The NSLF decreases by 5.82% with changes in the total length of the air route network.More importantly,the total operational cost of the whole network decreases by 6.22%.The computational results show the potential benefits of the model and the advantage of the algorithm.Optimization of air route network can significantly reduce operational cost while ensuring operation safety.
基金Supported by the National Natural Science Foundation of China(21376188,21676211)the Key Project of Industrial Science and Technology of Shaanxi Province(2015GY095)
文摘Inferior crude oil and fuel oil upgrading lead to escalating increase of hydrogen consumption in refineries.It is imperative to reduce the hydrogen consumption for energy-saving operations of refineries.An integration strategy of hydrogen network and an operational optimization model of hydrotreating(HDT)units are proposed based on the characteristics of reaction kinetics of HDT units.By solving the proposed model,the operating conditions of HDT units are optimized,and the parameters of hydrogen sinks are determined by coupling hydrodesulfurization(HDS),hydrodenitrification(HDN)and aromatic hydrogenation(HDA)kinetics.An example case of a refinery with annual processing capacity of eight million tons is adopted to demonstrate the feasibility of the proposed optimization strategies and the model.Results show that HDS,HDN and HDA reactions are the major source of hydrogen consumption in the refinery.The total hydrogen consumption can be reduced by 18.9%by applying conventional hydrogen network optimization model.When the hydrogen network is optimized after the operational optimization of HDT units is performed,the hydrogen consumption is reduced by28.2%.When the benefit of the fuel gas recovery is further considered,the total annual cost of hydrogen network can be reduced by 3.21×10~7CNY·a^(-1),decreased by 11.9%.Therefore,the operational optimization of the HDT units in refineries should be imposed to determine the parameters of hydrogen sinks base on the characteristics of reaction kinetics of the hydrogenation processes before the optimization of the hydrogen network is performed through the source-sink matching methods.
基金supported by the the Youth Science and Technology Innovation Fund (Science)(Nos.NS2014070, NS2014070)
文摘Air route network(ARN)planning is an efficient way to alleviate civil aviation flight delays caused by increasing development and pressure for safe operation.Here,the ARN shortest path was taken as the objective function,and an air route network node(ARNN)optimization model was developed to circumvent the restrictions imposed by″three areas″,also known as prohibited areas,restricted areas,and dangerous areas(PRDs),by creating agrid environment.And finally the objective function was solved by means of an adaptive ant colony algorithm(AACA).The A593,A470,B221,and G204 air routes in the busy ZSHA flight information region,where the airspace includes areas with different levels of PRDs,were taken as an example.Based on current flight patterns,a layout optimization of the ARNN was computed using this model and algorithm and successfully avoided PRDs.The optimized result reduced the total length of routes by 2.14% and the total cost by 9.875%.
基金Supported by the Education Foundation of Hubei Province under Grant No D20120104
文摘We propose a self-organized optimization mechanism to improve the transport capacity of complex gradient networks. We find that, regardless of network topology, the congestion pressure can be strongly reduced by the self-organized optimization mechanism. Furthermore, the random scale-free topology is more efficient to reduce congestion compared with the random Poisson topology under the optimization mechanism. The reason is that the optimization mechanism introduces the correlations between the gradient field and the local topology of the substrate network. Due to the correlations, the cutoff degree of the gradient network is strongly reduced and the number of the nodes exerting their maximal transport capacity consumedly increases. Our work presents evidence supporting the idea that scale-free networks can efficiently improve their transport capacity by self- organized mechanism under gradient-driven transport mode.
基金supported in part by Beijing Natural Science Foundation(4152047)the 863 project No.2014AA01A701+1 种基金111 Project of China under Grant B14010China Mobile Research Institute under grant[2014]451
文摘In this paper,a distributed chunkbased optimization algorithm is proposed for the resource allocation in broadband ultra-dense small cell networks.Based on the proposed algorithm,the power and subcarrier allocation problems are jointly optimized.In order to make the resource allocation suitable for large scale networks,the optimization problem is decomposed first based on an effective decomposition algorithm named optimal condition decomposition(OCD) algorithm.Furthermore,aiming at reducing implementation complexity,the subcarriers are divided into chunks and are allocated chunk by chunk.The simulation results show that the proposed algorithm achieves more superior performance than uniform power allocation scheme and Lagrange relaxation method,and then the proposed algorithm can strike a balance between the complexity and performance of the multi-carrier Ultra-Dense Networks.
基金Supported by the National Natural Science Foundation of China(No.21376185)
文摘The modeling and optimization of an industrial-scale crude distillation unit (CDU) are addressed. The main spec- ifications and base conditions of CDU are taken from a crude oil refinery in Wuhan, China. For modeling of a com- plicated CDU, an improved wavelet neural network (WNN) is presented to model the complicated CDU, in which novel parametric updating laws are developed to precisely capture the characteristics of CDU. To address CDU in an economically optimal manner, an economic optimization algorithm under prescribed constraints is presented. By using a combination of WNN-based optimization model and line-up competition algorithm (LCA), the supe- rior performance of the proposed approach is verified. Compared with the base operating condition, it is validat- ed that the increments of products including kerosene and diesel are up to 20% at least by increasing less than 5% duties of intermediate coolers such as second pump-around (PA2) and third Dump-around (PA3).
基金Supported by the National Natural Science Foundation of China(21276205)
文摘To explore the effect of removing different impurities to hydrogen networks, an MINLP model is proposed with all matching possibilities and the trade-off between operation cost and capital cost is considered. Furthermore,the impurity remover, hydrogen distribution, compressor and pipe setting are included in the model. Based on this model, the impurity and source(s) that are in higher priority for impurity removal, the optimal targeted concentration, and the hydrogen network with the minimum annual cost can be identified. The efficiency of the proposed model is verified by a case study.
基金supported by the National Basic Research Program of China (973 Program) under Grant 2013CB329104the National Natural Science Foundation of China under Grant 61372124 and 61427801the Key Projects of Natural Science Foundation of Jiangsu University under Grant 11KJA510001
文摘Network virtualization(NV) is widely considered as a key component of the future network and promises to allow multiple virtual networks(VNs) with different protocols to coexist on a shared substrate network(SN). One main challenge in NV is virtual network embedding(VNE). VNE is a NPhard problem. Previous VNE algorithms in the literature are mostly heuristic, while the remaining algorithms are exact. Heuristic algorithms aim to find a feasible embedding of each VN, not optimal or sub-optimal, in polynomial time. Though presenting the optimal or sub-optimal embedding per VN, exact algorithms are too time-consuming in smallscaled networks, not to mention moderately sized networks. To make a trade-off between the heuristic and the exact, this paper presents an effective algorithm, labeled as VNE-RSOT(Restrictive Selection and Optimization Theory), to solve the VNE problem. The VNERSOT can embed virtual nodes and links per VN simultaneously. The restrictive selection contributes to selecting candidate substrate nodes and paths and largely cuts down on the number of integer variables, used in the following optimization theory approach. The VNE-RSOT fights to minimize substrate resource consumption and accommodates more VNs. To highlight the efficiency of VNERSOT, a simulation against typical and stateof-art heuristic algorithms and a pure exact algorithm is made. Numerical results reveal that virtual network request(VNR) acceptance ratio of VNE-RSOT is, at least, 10% higher than the best-behaved heuristic. Other metrics, such as the execution time, are also plotted to emphasize and highlight the efficiency of VNE-RSOT.
文摘In this paper, we construct two models for the searching task for a lost plane. Model 1 determines the searching area. We predict the trajectory of floats generated after the disintegration of the plane by using RBF neural network model, and then determine the searching area according to the trajectory. With the pass of time, the searching area will also be constantly moving along the trajectory. Model 2 develops a maritime search plan to achieve the purpose of completing the search in the shortest time. We optimize the searching time and transform the problem into the 0-1 knapsack problem. Solving this problem by improved genetic algorithm, we can get the shortest searching time and the best choice for the search power.
基金supported in part by the National Natural Science Foundation of China under Grants U1805262,61871446,and 61671251。
文摘The interplay between artificial intelligence(AI) and fog radio access networks(F-RANs) is investigated in this work from two perspectives: how F-RANs enable hierarchical AI to be deployed in wireless networks and how AI makes F-RANs smarter to better serve mobile devices. Due to the heterogeneity of processing capability, the cloud, fog, and device layers in F-RANs provide hierarchical intelligence via centralized, distributed, and federated learning. In addition, cross-layer learning is also introduced to further reduce the demand for the memory size of the mobile devices. On the other hand, AI provides F-RANs with technologies and methods to deal with massive data and make smarter decisions. Specifically, machine learning tools such as deep neural networks are introduced for data processing, while reinforcement learning(RL) algorithms are adopted for network optimization and decisions. Then, two examples of AI-based applications in F-RANs, i.e., health monitoring and intelligent transportation systems, are presented, followed by a case study of an RL-based caching application in the presence of spatio-temporal unknown content popularity to showcase the potential of applying AI to F-RANs.
文摘By combining properly the simulated annealing algorithm and the nonlinear programming neural network, a new hybrid method for comtrained global optimization is proposed in this paper. To maintain the applicability of the simulated annealing algorithm used in the hybrid method as general as possible, the nonlinear programming neural network is employed at each iteration to find only a feasible solution to the original constrained problem rather than a local optimal solution. Such a feasible solution is obtained by solving an auxiliary optimization problem with a new objective function. The computational results for two numerical examples indicate that the proposed hybrid method for constrained global optimization is not only highly reliable but also much more effcient than the simulated annealing algorithm using the penalty function method to deal with the constraints.
基金supported partially by the National Science and Technology Major Projects under Grants No. 2012ZX03006003-005,No. 2012ZX03003006-002,and No. 2010ZX03002-008-01
文摘In recent years, wireless communication systems have experienced tremendous growth in data traffic. Many capacity-enhancing techniques are applied to elevate the gap between the amount of traffic and network capacity, and more solutions are required to minimize the gap. Traffic allocation among multiple networks is regarded as one of the most effective methods to solve the problem. However, current studies are unable to derive the quantity of traffic that each network should carry. An intelligent traffic allocation algorithm for multiple networks is proposed to obtain the optimal traffic distribution. Multiple factors affecting traffic distribution are considered in the proposed algorithm, such as network coverage, network cost, user habit, service types, network capacity and terminals. Using evaluations, we proved that the proposed algorithm enables a lower network cost than load balancing schemes. A case study of strategy rmldng for a 2G system refarming is presented to further illustrate the applicability of the proposed algorithm. We demonstrated that the new algorithm could be applied in strategy rmldng for telecommunication operators.
基金supported by the National Basic Research and Development Program of China (No. 2010CB732004)the joint funding of the National Natural Science Foundation and Shanghai Baosteel Group Corporation of China (No. 51074177)
文摘Because there is neither waste rock nor mill tailings in the gypsum mine, and the buildings on the goaf of gypsum mine are needed to be protected, the research proposed the scheme of the clay filling technology. Gypsum, cement, lime and water glass were used as adhesive, and the strength of different material ratios were investigated in this study. The influence factors of clay strength were obtained in the order of cement, gypsum, water glass and lime. The results show that the cement content is the determinant influence factor, and gypsum has positive effects, while the water glass can enhance both clay strength and the fluidity of the filing slurry. Furthermore, combining chaotic optimization method with neural network, the optimal ratio of composite cementing agent was obtained. The results show that the optimal ratio of water glass, cement, lime and clay (in quality) is 1.17:6.74:4.17:87.92 in the process of bottom self-flow filling, while the optimal ratio is 1.78:9.58:4.71:83.93 for roof-contacted filling. A novel filling process to fill in gypsum mine goaf with clay is established. The engineering practice shows that the filling cost is low, thus, notable economic benefit is achieved.
基金Financial support for this work,provided by the National Natural Science Foundation of China(No.50904070)the Science and Technology Foundation of China University of Mining & Technology (Nos.2007A046 and 2008A042)the Joint Production and Research Innovation Project of Jiangsu Province (No.BY2009114)
文摘Wireless sensor networks are useful complements to existing monitoring systems in underground mines. They play an important role of enhancing and improving coverage and flexibility of safety monitoring systems.Regions prone to danger and environments after disasters in underground mines require saving and balancing energy consumption of nodes to prolong the lifespan of networks.Based on the structure of a tunnel,we present a Long Chain-type Wireless Sensor Network(LC-WSN)to monitor the safety of underground mine tunnels.We define the optimal transmission distance and the range of the key region and present an Energy Optimal Routing(EOR)algorithm for LC-WSN to balance the energy consumption of nodes and maximize the lifespan of networks.EOR constructs routing paths based on an optimal transmission distance and uses an energy balancing strategy in the key region.Simulation results show that the EOR algorithm extends the lifespan of a network,balances the energy consumption of nodes in the key region and effectively limits the length of routing paths,compared with similar algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.61101117,61171099,and 61362008)the National Key Scientific and Technological Project of China (Grant No.2012ZX03004005002)+1 种基金the Fundamental Research Funds for the Central Universities,China (Grant No.BUPT2012RC0112)the Natural Science Foundation of Jiangxi Province,China (Grant No.20132BAB201018)
文摘In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.