This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intr...This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.展开更多
The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Gener...The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.展开更多
A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or ma...A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management.展开更多
The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptio...The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.展开更多
Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,w...Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,which is based on a centralized,programmable controller.Therefore,monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment.Consequently,this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms:K-means,Farthest First,Canopy,Density-based algorithm,and Exception-maximization(EM),using the Waikato Environment for Knowledge Analysis(WEKA)software to compare extensively between these five algorithms.Furthermore,this paper presents an SDN-based intrusion detection system using a deep learning(DL)model with the KDD(Knowledge Discovery in Databases)dataset.First,the utilized dataset is clustered into normal and four major attack categories via the clustering process.Then,a deep learning method is projected for building an efficient SDN-based intrusion detection system.The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset.Similarly,the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques.For example,the proposed method achieves a detection accuracy of 94.21%for the examined dataset.展开更多
An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detecti...An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.展开更多
The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, b...The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.展开更多
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one...Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.展开更多
Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,hi...Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.展开更多
Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tr...Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.展开更多
Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intr...Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intrusion Detection System(NIDS)is required to detect attacks in network traffic.This paper proposes a new hybrid method for intrusion detection and attack categorization.The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization.In the first step,the dataset is preprocessed through the data transformation technique and min-max method.Secondly,the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model’s performance.Next,we use various Support Vector Machine(SVM)types to detect intrusion and the Adaptive Neuro-Fuzzy System(ANFIS)to categorize probe,U2R,R2U,and DDOS attacks.The validation of the proposed method is calculated through Fine Gaussian SVM(FGSVM),which is 99.3%for the binary class.Mean Square Error(MSE)is reported as 0.084964 for training data,0.0855203 for testing,and 0.084964 to validate multiclass categorization.展开更多
Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or...Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or connections, often contain both numeric and nominal features. Both of these features contain important information for intrusion detection. These two features, on the other hand, have different characteristics. This paper presents a new network based anomaly intrusion detection approach that works well by building profiles for numeric and nominal features in different ways. During training, for each numeric feature, a normal profile is build through statistical distribution inference and parameter estimation, while for each nominal feature, a normal profile is setup through statistical method. These profiles are used as detection models during testing to judge whether a data being tested is benign or malicious. Experiments with the data set of 1999 DARPA (defense advanced research project agency) intrusion detection evaluation show that this approach can detect attacks effectively.展开更多
A new classification model for host intrusion detection based on the unidentified short sequences and RIPPER algorithm is proposed. The concepts of different short sequences on the system call traces are strictly defi...A new classification model for host intrusion detection based on the unidentified short sequences and RIPPER algorithm is proposed. The concepts of different short sequences on the system call traces are strictly defined on the basis of in-depth analysis of completeness and correctness of pattern databases. Labels of short sequences are predicted by learned RIPPER rule set and the nature of the unidentified short sequences is confirmed by statistical method. Experiment results indicate that the classification model increases clearly the deviation between the attack and the normal traces and improves detection capability against known and unknown attacks.展开更多
In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory...In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory.The next phase is clustering by using Fuzzy C-Means.Rough set theory is an efficient tool for further reducing redundancy.Fuzzy C-Means allows the objects to belong to several clusters simultaneously,with different degrees of membership.To evaluate the performance of the introduced approaches,we apply them to the international Knowledge Discovery and Data mining intrusion detection dataset.In the experimentations,we compare the performance of two rough set theory based hybrid methods for network intrusion detection.Experimental results illustrate that our algorithms are accurate models for handling complex attack patterns in large network.And these two methods can increase the efficiency and reduce the dataset by looking for overlapping categories.展开更多
In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detectio...In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detection system effectively.In this work,we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances.Our technique mitigates the statistical imbalance in these instances.We also carried out an experiment on the training model by increasing the instances,thereby increasing the attack instances step by step up to 13 levels.The experiments included not only known attacks,but also unknown new intrusions.The results are compared with the existing studies from the literature,and show an improvement in accuracy,sensitivity,and specificity over previous studies.The detection rates for the remote-to-user(R2L)and user-to-root(U2L)categories are improved significantly by adding fewer instances.The detection of many intrusions is increased from a very low to a very high detection rate.The detection of newer attacks that had not been used in training improved from 9%to 12%.This study has practical applications in network administration to protect from known and unknown attacks.If network administrators are running out of instances for some attacks,they can increase the number of instances with rarely appearing instances,thereby improving the detection of both known and unknown new attacks.展开更多
Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the al...Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches.展开更多
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ...Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.展开更多
Intrusion detection technology is to ensure the security of the computer system and the design and configuration of a can timely detect and report unauthorized or system abnormalities in the technology, which is used ...Intrusion detection technology is to ensure the security of the computer system and the design and configuration of a can timely detect and report unauthorized or system abnormalities in the technology, which is used for a security policy violation behavior detection in computer network technology. Computer database intrusion detection technology refers to the use of computer network resources in the daily use may be used to identify malicious behavior, and its behavior for the corresponding processing and testing process. The process includes not only the invasion outside the system, but also can detect the unauthorized users within the system, thus intrusion detection of computer database technology is very effective for the protection of computer system security. In this paper, the current computer network security risks are analyzed in detail, and expounds the role of computer database intrusion detection technology.展开更多
In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology o...In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.展开更多
Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to...Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.展开更多
基金Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2024R319)funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘This study describes improving network security by implementing and assessing an intrusion detection system(IDS)based on deep neural networks(DNNs).The paper investigates contemporary technical ways for enhancing intrusion detection performance,given the vital relevance of safeguarding computer networks against harmful activity.The DNN-based IDS is trained and validated by the model using the NSL-KDD dataset,a popular benchmark for IDS research.The model performs well in both the training and validation stages,with 91.30%training accuracy and 94.38%validation accuracy.Thus,the model shows good learning and generalization capabilities with minor losses of 0.22 in training and 0.1553 in validation.Furthermore,for both macro and micro averages across class 0(normal)and class 1(anomalous)data,the study evaluates the model using a variety of assessment measures,such as accuracy scores,precision,recall,and F1 scores.The macro-average recall is 0.9422,the macro-average precision is 0.9482,and the accuracy scores are 0.942.Furthermore,macro-averaged F1 scores of 0.9245 for class 1 and 0.9434 for class 0 demonstrate the model’s ability to precisely identify anomalies precisely.The research also highlights how real-time threat monitoring and enhanced resistance against new online attacks may be achieved byDNN-based intrusion detection systems,which can significantly improve network security.The study underscores the critical function ofDNN-based IDS in contemporary cybersecurity procedures by setting the foundation for further developments in this field.Upcoming research aims to enhance intrusion detection systems by examining cooperative learning techniques and integrating up-to-date threat knowledge.
文摘The ever-growing network traffic threat landscape necessitates adopting accurate and robust intrusion detection systems(IDSs).IDSs have become a research hotspot and have seen remarkable performance improvements.Generative adversarial networks(GANs)have also garnered increasing research interest recently due to their remarkable ability to generate data.This paper investigates the application of(GANs)in(IDS)and explores their current use within this research field.We delve into the adoption of GANs within signature-based,anomaly-based,and hybrid IDSs,focusing on their objectives,methodologies,and advantages.Overall,GANs have been widely employed,mainly focused on solving the class imbalance issue by generating realistic attack samples.While GANs have shown significant potential in addressing the class imbalance issue,there are still open opportunities and challenges to be addressed.Little attention has been paid to their applicability in distributed and decentralized domains,such as IoT networks.Efficiency and scalability have been mostly overlooked,and thus,future works must aim at addressing these gaps.
文摘A model of intelligent intrusion detection based on rough neural network (RNN), which combines the neural network and rough set, is presented. It works by capturing network packets to identify network intrusions or malicious attacks using RNN with sub-nets. The sub-net is constructed by detection-oriented signatures extracted using rough set theory to detect different intrusions. It is proved that RNN detection method has the merits of adaptive, high universality, high convergence speed, easy upgrading and management.
文摘The increasing amount and intricacy of network traffic in the modern digital era have worsened the difficulty of identifying abnormal behaviours that may indicate potential security breaches or operational interruptions. Conventional detection approaches face challenges in keeping up with the ever-changing strategies of cyber-attacks, resulting in heightened susceptibility and significant harm to network infrastructures. In order to tackle this urgent issue, this project focused on developing an effective anomaly detection system that utilizes Machine Learning technology. The suggested model utilizes contemporary machine learning algorithms and frameworks to autonomously detect deviations from typical network behaviour. It promptly identifies anomalous activities that may indicate security breaches or performance difficulties. The solution entails a multi-faceted approach encompassing data collection, preprocessing, feature engineering, model training, and evaluation. By utilizing machine learning methods, the model is trained on a wide range of datasets that include both regular and abnormal network traffic patterns. This training ensures that the model can adapt to numerous scenarios. The main priority is to ensure that the system is functional and efficient, with a particular emphasis on reducing false positives to avoid unwanted alerts. Additionally, efforts are directed on improving anomaly detection accuracy so that the model can consistently distinguish between potentially harmful and benign activity. This project aims to greatly strengthen network security by addressing emerging cyber threats and improving their resilience and reliability.
文摘Network management and multimedia data mining techniques have a great interest in analyzing and improving the network traffic process.In recent times,the most complex task in Software Defined Network(SDN)is security,which is based on a centralized,programmable controller.Therefore,monitoring network traffic is significant for identifying and revealing intrusion abnormalities in the SDN environment.Consequently,this paper provides an extensive analysis and investigation of the NSL-KDD dataset using five different clustering algorithms:K-means,Farthest First,Canopy,Density-based algorithm,and Exception-maximization(EM),using the Waikato Environment for Knowledge Analysis(WEKA)software to compare extensively between these five algorithms.Furthermore,this paper presents an SDN-based intrusion detection system using a deep learning(DL)model with the KDD(Knowledge Discovery in Databases)dataset.First,the utilized dataset is clustered into normal and four major attack categories via the clustering process.Then,a deep learning method is projected for building an efficient SDN-based intrusion detection system.The results provide a comprehensive analysis and a flawless reasonable study of different kinds of attacks incorporated in the KDD dataset.Similarly,the outcomes reveal that the proposed deep learning method provides efficient intrusion detection performance compared to existing techniques.For example,the proposed method achieves a detection accuracy of 94.21%for the examined dataset.
文摘An important problem in wireless communication networks (WCNs) is that they have a minimum number of resources, which leads to high-security threats. An approach to find and detect the attacks is the intrusion detection system (IDS). In this paper, the fuzzy lion Bayes system (FLBS) is proposed for intrusion detection mechanism. Initially, the data set is grouped into a number of clusters by the fuzzy clustering algorithm. Here, the Naive Bayes classifier is integrated with the lion optimization algorithm and the new lion naive Bayes (LNB) is created for optimally generating the probability measures. Then, the LNB model is applied to each data group, and the aggregated data is generated. After generating the aggregated data, the LNB model is applied to the aggregated data, and the abnormal nodes are identified based on the posterior probability function. The performance of the proposed FLBS system is evaluated using the KDD Cup 99 data and the comparative analysis is performed by the existing methods for the evaluation metrics accuracy and false acceptance rate (FAR). From the experimental results, it can be shown that the proposed system has the maximum performance, which shows the effectiveness of the proposed system in the intrusion detection.
文摘The challenge of achieving situational understanding is a limiting factor in effective, timely, and adaptive cyber-security analysis. Anomaly detection fills a critical role in network assessment and trend analysis, both of which underlie the establishment of comprehensive situational understanding. To that end, we propose a cyber security data warehouse implemented as a hierarchical graph of aggregations that captures anomalies at multiple scales. Each node of our proposed graph is a summarization table of cyber event aggregations, and the edges are aggregation operators. The cyber security data warehouse enables domain experts to quickly traverse a multi-scale aggregation space systematically. We describe the architecture of a test bed system and a summary of results on the IEEE VAST 2012 Cyber Forensics data.
文摘Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration.
基金The authors would like to thank Princess Nourah bint Abdulrahman University for funding this project through the Researchers Supporting Project(PNURSP2023R319)this research was funded by the Prince Sultan University,Riyadh,Saudi Arabia.
文摘Intrusion detection systems(IDS)are essential in the field of cybersecurity because they protect networks from a wide range of online threats.The goal of this research is to meet the urgent need for small-footprint,highly-adaptable Network Intrusion Detection Systems(NIDS)that can identify anomalies.The NSL-KDD dataset is used in the study;it is a sizable collection comprising 43 variables with the label’s“attack”and“level.”It proposes a novel approach to intrusion detection based on the combination of channel attention and convolutional neural networks(CNN).Furthermore,this dataset makes it easier to conduct a thorough assessment of the suggested intrusion detection strategy.Furthermore,maintaining operating efficiency while improving detection accuracy is the primary goal of this work.Moreover,typical NIDS examines both risky and typical behavior using a variety of techniques.On the NSL-KDD dataset,our CNN-based approach achieves an astounding 99.728%accuracy rate when paired with channel attention.Compared to previous approaches such as ensemble learning,CNN,RBM(Boltzmann machine),ANN,hybrid auto-encoders with CNN,MCNN,and ANN,and adaptive algorithms,our solution significantly improves intrusion detection performance.Moreover,the results highlight the effectiveness of our suggested method in improving intrusion detection precision,signifying a noteworthy advancement in this field.Subsequent efforts will focus on strengthening and expanding our approach in order to counteract growing cyberthreats and adjust to changing network circumstances.
基金Data and Artificial Intelligence Scientific Chair at Umm AlQura University.
文摘Networks provide a significant function in everyday life,and cybersecurity therefore developed a critical field of study.The Intrusion detection system(IDS)becoming an essential information protection strategy that tracks the situation of the software and hardware operating on the network.Notwithstanding advancements of growth,current intrusion detection systems also experience difficulties in enhancing detection precision,growing false alarm levels and identifying suspicious activities.In order to address above mentioned issues,several researchers concentrated on designing intrusion detection systems that rely on machine learning approaches.Machine learning models will accurately identify the underlying variations among regular information and irregular information with incredible efficiency.Artificial intelligence,particularly machine learning methods can be used to develop an intelligent intrusion detection framework.There in this article in order to achieve this objective,we propose an intrusion detection system focused on a Deep extreme learning machine(DELM)which first establishes the assessment of safety features that lead to their prominence and then constructs an adaptive intrusion detection system focusing on the important features.In the moment,we researched the viability of our suggested DELMbased intrusion detection system by conducting dataset assessments and evaluating the performance factors to validate the system reliability.The experimental results illustrate that the suggested framework outclasses traditional algorithms.In fact,the suggested framework is not only of interest to scientific research but also of functional importance.
基金The authors would like to thank the Deanship of Scientific Research at Prince Sattam bin Abdul-Aziz University,Saudi Arabia.
文摘Due to the widespread use of the internet and smart devices,various attacks like intrusion,zero-day,Malware,and security breaches are a constant threat to any organization’s network infrastructure.Thus,a Network Intrusion Detection System(NIDS)is required to detect attacks in network traffic.This paper proposes a new hybrid method for intrusion detection and attack categorization.The proposed approach comprises three steps to address high false and low false-negative rates for intrusion detection and attack categorization.In the first step,the dataset is preprocessed through the data transformation technique and min-max method.Secondly,the random forest recursive feature elimination method is applied to identify optimal features that positively impact the model’s performance.Next,we use various Support Vector Machine(SVM)types to detect intrusion and the Adaptive Neuro-Fuzzy System(ANFIS)to categorize probe,U2R,R2U,and DDOS attacks.The validation of the proposed method is calculated through Fine Gaussian SVM(FGSVM),which is 99.3%for the binary class.Mean Square Error(MSE)is reported as 0.084964 for training data,0.0855203 for testing,and 0.084964 to validate multiclass categorization.
基金Project supported by National Natural Science Foundation of China (Grant No .60373088) ,and National Defense Research Foun-dation of China (Grant No .4131605)
文摘Anomaly detection is a key element of intrusion detection systems and a necessary complement of widely used misuse intrusion detection systems. Data sources used by network intrusion detection, like network packets or connections, often contain both numeric and nominal features. Both of these features contain important information for intrusion detection. These two features, on the other hand, have different characteristics. This paper presents a new network based anomaly intrusion detection approach that works well by building profiles for numeric and nominal features in different ways. During training, for each numeric feature, a normal profile is build through statistical distribution inference and parameter estimation, while for each nominal feature, a normal profile is setup through statistical method. These profiles are used as detection models during testing to judge whether a data being tested is benign or malicious. Experiments with the data set of 1999 DARPA (defense advanced research project agency) intrusion detection evaluation show that this approach can detect attacks effectively.
文摘A new classification model for host intrusion detection based on the unidentified short sequences and RIPPER algorithm is proposed. The concepts of different short sequences on the system call traces are strictly defined on the basis of in-depth analysis of completeness and correctness of pattern databases. Labels of short sequences are predicted by learned RIPPER rule set and the nature of the unidentified short sequences is confirmed by statistical method. Experiment results indicate that the classification model increases clearly the deviation between the attack and the normal traces and improves detection capability against known and unknown attacks.
基金Sponsored by the National Social Science Fund(Grant No.13CFX049)the Shanghai University Young Teacher Training Program(Grant No.hdzf10008)the Research Fund for East China University of Political Science and Law(Grant No.11H2K034)
文摘In this paper,we propose two intrusion detection methods which combine rough set theory and Fuzzy C-Means for network intrusion detection.The first step consists of feature selection which is based on rough set theory.The next phase is clustering by using Fuzzy C-Means.Rough set theory is an efficient tool for further reducing redundancy.Fuzzy C-Means allows the objects to belong to several clusters simultaneously,with different degrees of membership.To evaluate the performance of the introduced approaches,we apply them to the international Knowledge Discovery and Data mining intrusion detection dataset.In the experimentations,we compare the performance of two rough set theory based hybrid methods for network intrusion detection.Experimental results illustrate that our algorithms are accurate models for handling complex attack patterns in large network.And these two methods can increase the efficiency and reduce the dataset by looking for overlapping categories.
基金the Institute for Information and Communications Technology Planning and Evaluation(IITP)funded by the Korea Government(MSIT)under Grant 20190007960022002(2020000000110).
文摘In network-based intrusion detection practices,there are more regular instances than intrusion instances.Because there is always a statistical imbalance in the instances,it is difficult to train the intrusion detection system effectively.In this work,we compare intrusion detection performance by increasing the rarely appearing instances rather than by eliminating the frequently appearing duplicate instances.Our technique mitigates the statistical imbalance in these instances.We also carried out an experiment on the training model by increasing the instances,thereby increasing the attack instances step by step up to 13 levels.The experiments included not only known attacks,but also unknown new intrusions.The results are compared with the existing studies from the literature,and show an improvement in accuracy,sensitivity,and specificity over previous studies.The detection rates for the remote-to-user(R2L)and user-to-root(U2L)categories are improved significantly by adding fewer instances.The detection of many intrusions is increased from a very low to a very high detection rate.The detection of newer attacks that had not been used in training improved from 9%to 12%.This study has practical applications in network administration to protect from known and unknown attacks.If network administrators are running out of instances for some attacks,they can increase the number of instances with rarely appearing instances,thereby improving the detection of both known and unknown new attacks.
文摘Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches.
文摘Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category.
文摘Intrusion detection technology is to ensure the security of the computer system and the design and configuration of a can timely detect and report unauthorized or system abnormalities in the technology, which is used for a security policy violation behavior detection in computer network technology. Computer database intrusion detection technology refers to the use of computer network resources in the daily use may be used to identify malicious behavior, and its behavior for the corresponding processing and testing process. The process includes not only the invasion outside the system, but also can detect the unauthorized users within the system, thus intrusion detection of computer database technology is very effective for the protection of computer system security. In this paper, the current computer network security risks are analyzed in detail, and expounds the role of computer database intrusion detection technology.
基金supported by National Nature Science Foundation of China (Grant No.61471182)Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.KYCX20_2993)Jiangsu postgraduate research innovation project (SJCX18_0784)。
文摘In this paper,we propose a intrusion detection algorithm based on auto-encoder and three-way decisions(AE-3WD)for industrial control networks,aiming at the security problem of industrial control network.The ideology of deep learning is similar to the idea of intrusion detection.Deep learning is a kind of intelligent algorithm and has the ability of automatically learning.It uses self-learning to enhance the experience and dynamic classification capabilities.We use deep learning to improve the intrusion detection rate and reduce the false alarm rate through learning,a denoising AutoEncoder and three-way decisions intrusion detection method AE-3WD is proposed to improve intrusion detection accuracy.In the processing,deep learning AutoEncoder is used to extract the features of high-dimensional data by combining the coefficient penalty and reconstruction loss function of the encode layer during the training mode.A multi-feature space can be constructed by multiple feature extractions from AutoEncoder,and then a decision for intrusion behavior or normal behavior is made by three-way decisions.NSL-KDD data sets are used to the experiments.The experiment results prove that our proposed method can extract meaningful features and effectively improve the performance of intrusion detection.
基金the National High Technology Development "863" Program of China (2006AA01Z436, 2007AA01Z452)the National Natural Science Foundation of China(60702042).
文摘Mobile ad hoc networking (MANET) has become an exciting and important technology in recent years, because of the rapid proliferation of wireless devices. Mobile ad hoc networks is highly vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, and lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer sufficient and effective for those features. A distributed intrusion detection approach based on timed automata is given. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then the timed automata is constructed by the way of manually abstracting the correct behaviours of the node according to the routing protocol of dynamic source routing (DSR). The monitor nodes can verify the behaviour of every nodes by timed automata, and validly detect real-time attacks without signatures of intrusion or trained data. Compared with the architecture where each node is its own IDS agent, the approach is much more efficient while maintaining the same level of effectiveness. Finally, the intrusion detection method is evaluated through simulation experiments.