The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical...The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.展开更多
The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and co...The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.展开更多
The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system.In this paper, cubic notation was used to describe the logic function of a network in a well-balanced state,and then t...The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system.In this paper, cubic notation was used to describe the logic function of a network in a well-balanced state,and then the sharp-product operation was used to construct the disjoint minimal path set of the network.A computer program has been developed,and when combined with decomposition technology,the reliability of a general lifeline network can be effectively and automatically calculated.展开更多
In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the ...In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.展开更多
A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In con...A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.展开更多
In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communic...In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.展开更多
First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computat...First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.展开更多
Communication network has communication capacity and connection reliability of the links. They canbe independently defined and can be used separately, and when the reliability of a communication network isanalyzed fro...Communication network has communication capacity and connection reliability of the links. They canbe independently defined and can be used separately, and when the reliability of a communication network isanalyzed from a macroscopical angle of view, it is more objective to express the performance index of a commu-nication network as a whole. The reliability index weighted capacity is just obtained by integrating these two pa-rameters. It is necessary to further study the algorithm to calculate the reliability index of the communicationnetwork with a complicated topologic structure and a whole algebraic algorithm is therefore proposed for calcula-tion of the reliability index weighted capacity of a communication network with a topologic structure. The wholecomputational procedure of the algorithm is illustrated with a typical example.展开更多
A major challenge of network virtualization is the virtual network resource allocation problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. However, the ex...A major challenge of network virtualization is the virtual network resource allocation problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. However, the existing algorithms are almost concentrated on the randomly small-scale network topology, which is not suitable for practical large-scale network environments, because more time is spent on traversing SN and VN, resulting in VN requests congestion. To address this problem, virtual network mapping algorithm is proposed for large-scale network based on small-world characteristic of complex network and network coordinate system. Compared our algorithm with algorithm D-ViNE, experimental results show that our algorithm improves the overall performance.展开更多
The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the tra...The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the transmission links, in order to estimate the reliability performance of communication network comprehensively and objectively. To realize the full algebraic calculation, the key problem should be resolved, which is to find an algorithm to calculate all the routes between nodes of a network. A kind of logic algebraic algorithm of network routes is studied and based on this algorithm, the full algebraic algorithm of normalized reliability index weighted by capacity is studied. For this algorithm, it is easy to design program and the calculation of reliability index is finished, which is the foundation of the comprehensive and objective estimation of communication networks. The calculation procedure of the algorithm is introduced through typical examples and the results verify the algorithm.展开更多
Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assig...Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.展开更多
Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error...Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.展开更多
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A...As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.展开更多
In this paper, we report research on how to design the tele-network. First of all, we defined the reliability of tele-network. According to the definition, we divide the whole reliability into two parts:the reliabilit...In this paper, we report research on how to design the tele-network. First of all, we defined the reliability of tele-network. According to the definition, we divide the whole reliability into two parts:the reliability of the mini-way and that of the whole system. Then we do algebra unintersection of the mini-way, deriving a function of reliability of tele-network. Also, we got a function of the cost of tele-network after analyzing the cost of arcs and points. Finally, we give a mathematical model to design a tele-network. For the algorithm, we define the distance of a network and adjacent area within certain boundaries . We present a new algorithm--Queue Competition Algorithm (QCA) based on the adjacent area . The QCA correlates sequence of fitnesses in their father-generations with hunting zone of mutation and the number of individuals generated by mutation, making the stronger fitness in a small zone converge at a local extreme value, but the weaker one takes the advantage of lots of individuals and a big zone to hunt a new local extreme value. In this way, we get the overall extreme value. Numerical simulation shows that we can get the efficient hunting and exact solution by using QCA. The QCA efficient hunting and exact solution.展开更多
A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similar...A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
.GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN alg....GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN algorithm. The algorithm firstly get the network center nodes set, then use the shortest paths between center nodes and other nodes to calculate the edge betweenness, and then use incremental module degree as the algorithm terminates standard. Experiments show that, the new algorithm not only ensures accuracy of network community division, but also greatly reduced the time complexity, and improves the efficiency of community division.展开更多
To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algori...To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algorithm is made up of two parts: the first part decomposes the network into several independent areas based on community structure and decouples the information flow and control power among areas; the second part selects the center nodes from each area with the help of the control centrality index. As long as the status of center nodes is kept on a satisfactory level in each area, the whole system is under effective control. Finally, the algorithm is applied to power grids, and the simulations prove its effectiveness.展开更多
Research on the next generation network architecture is a hot topic. To meet the requirements of the new Internet environment and eliminate the shortcomings of the existing network, integrated network is presented. In...Research on the next generation network architecture is a hot topic. To meet the requirements of the new Internet environment and eliminate the shortcomings of the existing network, integrated network is presented. In the naming system part, a system based on Chord algorithm was used, and multi-path is introduced to improve the name resolution reliability. In this paper, we mainly pay attention to the reliability model of integrated naming network system which can be attributed as a multi-path transmission issue, and the name resolution paths used in the network path may be cut off by attacks or other events. This paper focuses on parallel multi-path, which is recoverable when failure happens, transmission reliability, and proposes a corresponding reliability model to get the probability of successful transmission in such conditions. Finally, a numerical simulation is devised to demonstrate the multi-path name resolution's high reliability.展开更多
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently...Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.展开更多
基金Natural Science Funds for the Innovative Research Group of China Under Grant No.50621062
文摘The seismic reliability evaluation of lifeline networks has received considerable attention and been widely studied. In this paper, on the basis of an original recursive decomposition algorithm, an improved analytical approach to evaluate the seismic reliability of large lifeline systems is presented. The proposed algorithm takes the shortest path from the source to the sink of a network as decomposition policy. Using the Boolean laws of set operation and the probabilistic operation principal, a recursive decomposition process is constructed in which the disjoint minimal path set and the disjoint minimal cut set are simultaneously enumerated. As the result, a probabilistic inequality can be used to provide results that satisfy a prescribed error bound. During the decomposition process, different from the original recursive decomposition algorithm which only removes edges to simplify the network, the proposed algorithm simplifies the network by merging nodes into sources and removing edges. As a result, the proposed algorithm can obtain simpler networks. Moreover, for a network owning s-independent components in its component set, two network reduction techniques are introduced to speed up the proposed algorithm. A series of case studies, including an actual water distribution network and a large urban gas system, are calculated using the proposed algorithm. The results indicate that the proposed algorithm provides a useful probabilistic analysis method for the seismic reliability evaluation of lifeline networks.
基金supported by the National Natural Science Foundation of China(51875465)
文摘The present study proposed an enhanced cuckoo search(ECS) algorithm combined with artificial neural network(ANN) as the surrogate model to solve structural reliability problems. In order to enhance the accuracy and convergence rate of the original cuckoo search(CS) algorithm, the main parameters namely, abandon probability of worst nests paand search step sizeα0 are dynamically adjusted via nonlinear control equations. In addition, a global-best guided equation incorporating the information of global best nest is introduced to the ECS to enhance its exploitation. Then, the proposed ECS is linked to the well-trained ANN model for structural reliability analysis. The computational capability of the proposed algorithm is validated using five typical structural reliability problems and an engineering application. The comparison results show the efficiency and accuracy of the proposed algorithm.
基金Key Project of Science and Technology from the State Plan Committee.No.101-9914003
文摘The algorithm is based on constructing a disjoin kg t set of the minimal paths in a network system.In this paper, cubic notation was used to describe the logic function of a network in a well-balanced state,and then the sharp-product operation was used to construct the disjoint minimal path set of the network.A computer program has been developed,and when combined with decomposition technology,the reliability of a general lifeline network can be effectively and automatically calculated.
基金Ministry of Science and Technology of China Under Grant No.SLDRCE09-B-12Natural Science Funds for Young Scholars of China Under Grant No.50808144
文摘In this paper, an improved cut-based recursive decomposition algorithm is proposed for lifeline networks. First, a complementary structural function is established and three theorems are presented as a premise of the proposed algorithm. Taking the minimal cut of a network as decomposition policy, the proposed algorithm constructs a recursive decomposition process. During the decomposition, both the disjoint minimal cut set and the disjoint minimal path set are simultaneously enumerated. Therefore, in addition to obtaining an accurate value after decomposing all disjoint minimal cuts and disjoint minimal paths, the algorithm provides approximate results which satisfy a prescribed error bound using a probabilistic inequality. Two example networks, including a large urban gas system, are analyzed using the proposed algorithm. Meanwhile, a part of the results are compared with the results obtained by a path-based recursive decomposition algorithm. These results show that the proposed algorithm provides a useful probabilistic analysis method for the reliability evaluation of lifeline networks and may be more suitable for networks where the edges have low reliabilities.
基金National Natural Science Foundation of China(No.61203184)
文摘A system reliability model based on Bayesian network(BN)is built via an evolutionary strategy called dual genetic algorithm(DGA).BN is a probabilistic approach to analyze relationships between stochastic events.In contrast with traditional methods where BN model is built by professionals,DGA is proposed for the automatic analysis of historical data and construction of BN for the estimation of system reliability.The whole solution space of BN structures is searched by DGA and a more accurate BN model is obtained.Efficacy of the proposed method is shown by some literature examples.
文摘In this,communication world, the Network Function Virtualization concept is utilized for many businesses, small services to virtualize the network nodefunction and to build a block that may connect the chain, communication services.Mainly, Virtualized Network Function Forwarding Graph (VNF-FG) has beenused to define the connection between the VNF and to give the best end-to-endservices. In the existing method, VNF mapping and backup VNF were proposedbut there was no profit and reliability improvement of the backup and mapping ofthe primary VNF. As a consequence, this paper offers a Hybrid Hexagon-CostEfficient algorithm for determining the best VNF among multiple VNF and backing up the best VNF, lowering backup costs while increasing dependability. TheVNF is chosen based on the highest cost-aware important measure (CIM) rate,which is used to assess the relevance of the VNF forwarding graph.To achieveoptimal cost-efficiency, VNF with the maximum CIM is selected. After the selection process, updating is processed by three steps which include one backup VNFfrom one SFC, two backup VNF from one Service Function Chain (SFC),and twobackup VNF from different SFC. Finally, this proposed method is compared withCERA, MinCost, MaxRbyInr based on backup cost, number of used PN nodes,SFC request utility, and latency. The simulation result shows that the proposedmethod cuts down the backup cost and computation time by 57% and 45% compared with the CER scheme and improves the cost-efficiency. As a result, this proposed system achieves less backup cost, high reliability, and low timeconsumption which can improve the Virtualized Network Function operation.
文摘First,the state space tree method for finding communication network overall re-liability is presented.It directly generates one disjoint tree multilevel polynomial of a networkgraph.Its advantages are smaller computational effort(its computing time complexity is O(en_l),where e is the number of edges and n_l is the number of leaves)and shorter resulting expression.Second,based on it an exact decomposition algorithm for finding communication network overallreliability is presented by applying the hypergraph theory.If we use it to carry out the m-timedecomposition of a network graph,the communication network scale which can be analyzed by acomputer can be extended to m-fold.
基金Sponsored by the Natural Science Foundation of Harbin Institute of Technology (Weihai) (Grant No. HIT(WH). 2002. 7)
文摘Communication network has communication capacity and connection reliability of the links. They canbe independently defined and can be used separately, and when the reliability of a communication network isanalyzed from a macroscopical angle of view, it is more objective to express the performance index of a commu-nication network as a whole. The reliability index weighted capacity is just obtained by integrating these two pa-rameters. It is necessary to further study the algorithm to calculate the reliability index of the communicationnetwork with a complicated topologic structure and a whole algebraic algorithm is therefore proposed for calcula-tion of the reliability index weighted capacity of a communication network with a topologic structure. The wholecomputational procedure of the algorithm is illustrated with a typical example.
基金Sponsored by the Funds for Creative Research Groups of China(Grant No. 60821001)National Natural Science Foundation of China(Grant No.60973108 and 60902050)973 Project of China (Grant No.2007CB310703)
文摘A major challenge of network virtualization is the virtual network resource allocation problem that deals with efficient mapping of virtual nodes and virtual links onto the substrate network resources. However, the existing algorithms are almost concentrated on the randomly small-scale network topology, which is not suitable for practical large-scale network environments, because more time is spent on traversing SN and VN, resulting in VN requests congestion. To address this problem, virtual network mapping algorithm is proposed for large-scale network based on small-world characteristic of complex network and network coordinate system. Compared our algorithm with algorithm D-ViNE, experimental results show that our algorithm improves the overall performance.
文摘The conception of the normalized reliability index weighted by capacity is introduced, which combing the communication capacity, the reliability probability of exchange nodes and the reliability probability of the transmission links, in order to estimate the reliability performance of communication network comprehensively and objectively. To realize the full algebraic calculation, the key problem should be resolved, which is to find an algorithm to calculate all the routes between nodes of a network. A kind of logic algebraic algorithm of network routes is studied and based on this algorithm, the full algebraic algorithm of normalized reliability index weighted by capacity is studied. For this algorithm, it is easy to design program and the calculation of reliability index is finished, which is the foundation of the comprehensive and objective estimation of communication networks. The calculation procedure of the algorithm is introduced through typical examples and the results verify the algorithm.
文摘Computer networks and power transmission networks are treated as capacitated flow networks.A capacitated flow network may partially fail due to maintenance.Therefore,the capacity of each edge should be optimally assigned to face critical situations-i.e.,to keep the network functioning normally in the case of failure at one or more edges.The robust design problem(RDP)in a capacitated flow network is to search for the minimum capacity assignment of each edge such that the network still survived even under the edge’s failure.The RDP is known as NP-hard.Thus,capacity assignment problem subject to system reliability and total capacity constraints is studied in this paper.The problem is formulated mathematically,and a genetic algorithm is proposed to determine the optimal solution.The optimal solution found by the proposed algorithm is characterized by maximum reliability and minimum total capacity.Some numerical examples are presented to illustrate the efficiency of the proposed approach.
文摘Collision detection mechanisms in Wireless Sensor Networks (WSNs) have largely been revolving around direct demodulation and decoding of received packets and deciding on a collision based on some form of a frame error detection mechanism, such as a CRC check. The obvious drawback of full detection of a received packet is the need to expend a significant amount of energy and processing complexity in order to fully decode a packet, only to discover the packet is illegible due to a collision. In this paper, we propose a suite of novel, yet simple and power-efficient algorithms to detect a collision without the need for full-decoding of the received packet. Our novel algorithms aim at detecting collision through fast examination of the signal statistics of a short snippet of the received packet via a relatively small number of computations over a small number of received IQ samples. Hence, the proposed algorithms operate directly at the output of the receiver's analog-to-digital converter and eliminate the need to pass the signal through the entire. In addition, we present a complexity and power-saving comparison between our novel algorithms and conventional full-decoding (for select coding schemes) to demonstrate the significant power and complexity saving advantage of our algorithms.
文摘As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
基金Supported by the National Natura1 Science Foundation of China(70071042,60073043,60133010)
文摘In this paper, we report research on how to design the tele-network. First of all, we defined the reliability of tele-network. According to the definition, we divide the whole reliability into two parts:the reliability of the mini-way and that of the whole system. Then we do algebra unintersection of the mini-way, deriving a function of reliability of tele-network. Also, we got a function of the cost of tele-network after analyzing the cost of arcs and points. Finally, we give a mathematical model to design a tele-network. For the algorithm, we define the distance of a network and adjacent area within certain boundaries . We present a new algorithm--Queue Competition Algorithm (QCA) based on the adjacent area . The QCA correlates sequence of fitnesses in their father-generations with hunting zone of mutation and the number of individuals generated by mutation, making the stronger fitness in a small zone converge at a local extreme value, but the weaker one takes the advantage of lots of individuals and a big zone to hunt a new local extreme value. In this way, we get the overall extreme value. Numerical simulation shows that we can get the efficient hunting and exact solution by using QCA. The QCA efficient hunting and exact solution.
文摘A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. Individual crossover is based on the quality of individuals' genes; all nodes unassigned to any community are grouped into a new community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
文摘.GN algorithm has high classification accuracy on community detection, but its time complexity is too high. In large scale network, the algorithm is lack of practical values. This paper puts forward an improved GN algorithm. The algorithm firstly get the network center nodes set, then use the shortest paths between center nodes and other nodes to calculate the edge betweenness, and then use incremental module degree as the algorithm terminates standard. Experiments show that, the new algorithm not only ensures accuracy of network community division, but also greatly reduced the time complexity, and improves the efficiency of community division.
基金the National Science Foundation of China (No.50525721, 50595411)the National Basic Research Program of China(No.G2004CB217902)
文摘To analyze and control complex networks effectively, this paper puts forward a new kind of scheme, which takes control separately in each area and can achieve the network’s coordinated optimality. The proposed algorithm is made up of two parts: the first part decomposes the network into several independent areas based on community structure and decouples the information flow and control power among areas; the second part selects the center nodes from each area with the help of the control centrality index. As long as the status of center nodes is kept on a satisfactory level in each area, the whole system is under effective control. Finally, the algorithm is applied to power grids, and the simulations prove its effectiveness.
基金Sponsored by the National Grand Fundamental Research 973 Program of China ( Grant No. 2007CB307101-1)the Fundamental Research Funds in Beijing Jiaotong University ( Grant No. W11JB00630)
文摘Research on the next generation network architecture is a hot topic. To meet the requirements of the new Internet environment and eliminate the shortcomings of the existing network, integrated network is presented. In the naming system part, a system based on Chord algorithm was used, and multi-path is introduced to improve the name resolution reliability. In this paper, we mainly pay attention to the reliability model of integrated naming network system which can be attributed as a multi-path transmission issue, and the name resolution paths used in the network path may be cut off by attacks or other events. This paper focuses on parallel multi-path, which is recoverable when failure happens, transmission reliability, and proposes a corresponding reliability model to get the probability of successful transmission in such conditions. Finally, a numerical simulation is devised to demonstrate the multi-path name resolution's high reliability.
基金National Natural Science Foundation of China(11971211,12171388).
文摘Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms.