Pressure effect on the electrical conductivity of San Carlos olivine was investigated by the newly installed electrical conductivity measurement system at China University of Geosciences. Electrical conductivity of Sa...Pressure effect on the electrical conductivity of San Carlos olivine was investigated by the newly installed electrical conductivity measurement system at China University of Geosciences. Electrical conductivity of San Carlos olivine aggregates was measured up to 12 GPa and 1475 K using the Walker-type multi-anvil apparatus equipped with eight WC cubes as the second-stage anvils. The pressure generation against applied load for the experimental assemblage was examined by phase transition of Bi, quartz, forsterite under different P-T conditions. To check the data validity of this new system, electrical conductivities of the serpentinites and talc samples were measured. The results are consistent with the published data of the same samples. Electrical conductivity (σ) of the San Carlos olivine aggregates and temperature (T) satisfy the Arrhenian formula: σ=σ0exp[-(△E+P△V)/kT]. The pre-exponential factor (σ0), activation energy (AE) and activation volume (AV) yield value of 7.74 S/m, 0.85 eV and 0.94 cm^3/mol, respectively. Electrical conductivities of the San Carlos olivine aggregates decline with increasing pressure at same temperatures. The negative pressure effect can be interpreted by strain energy model of defect energy together with the lattice deformation. In addition, the electrical conductivity-depth 1-D profile of the upper mantle was constructed based on our results and some assumptions. The calculated profile is concordant with the geophysical observation at the depth of 180-350 km beneath Europe, which indicates that the upper mantle beneath Europe might be dry.展开更多
The oxygen fugacity(f_(O2)) may affect the ionic conductivity of olivine under upper mantle conditions because Mg vacancies can be produced in the crystal structure by the oxidization of iron from Fe^(2+) to Fe3+. Her...The oxygen fugacity(f_(O2)) may affect the ionic conductivity of olivine under upper mantle conditions because Mg vacancies can be produced in the crystal structure by the oxidization of iron from Fe^(2+) to Fe3+. Here we investigated olivine ionic conductivity at 4 GPa, as a function of temperature, crystallographic orientation, and oxygen fugacity, corresponding to the topmost asthenospheric conditions. The results demonstrate that the ionic conductivity is insensitive to f_(O2) under relatively reduced conditions(f_(O2) below Re-ReO_(2) buffer), whereas it has a clear f_(O2)-dependence under relatively oxidized conditions(f_(O2) around the magnetite-hematite buffer). The ionic conduction in olivine may contribute significantly to the conductivity anomaly in the topmost asthenosphere especially at relatively oxidized conditions.展开更多
Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are o...Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.展开更多
This paper is the first one of a series of three papers on the fluid evolution of the crust-upper mantle and the causes of earthquakes. Their relationship between the deep-seated fluids and the seismic activities are...This paper is the first one of a series of three papers on the fluid evolution of the crust-upper mantle and the causes of earthquakes. Their relationship between the deep-seated fluids and the seismic activities are discussed from aspects of their macoscopic scale, microscopic mechanism and dynamic behaviors in the three papers respectively. Based on magnetotelluric sounding (MT) measurements conducted by Chinese geophysicists in more than 20 years, the maps of the upper mantle conductive layer (MCL) with a buried depth of>50 km and the crustal conductive layer (CCL) with a buried depth of >15 km in the Chinese mainland are Presented in this paper. The resistivity structure, the causes of conductive layers in crust-mantle and the relationships between earthquake distribution and conductive layers are discussed.展开更多
The electrical conductivity of molten olivine is studied up to 3720K and 13.2 GPa. The results indicate that the electrical conductivity of molten olivine exhibits the perfect Arrhenius behaviour. The activation energ...The electrical conductivity of molten olivine is studied up to 3720K and 13.2 GPa. The results indicate that the electrical conductivity of molten olivine exhibits the perfect Arrhenius behaviour. The activation energy as well as temperature effect is much smaller than that of the solid olivine. It is expected that the high conductivity zone in the mantle is almost independent of the melting based on our experimental data.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41472040)the Fundamental Research Funds for the Central Universities (Grant Nos. G1323531510, CUGL150801)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (Grant No. MSFGPMR201408)
文摘Pressure effect on the electrical conductivity of San Carlos olivine was investigated by the newly installed electrical conductivity measurement system at China University of Geosciences. Electrical conductivity of San Carlos olivine aggregates was measured up to 12 GPa and 1475 K using the Walker-type multi-anvil apparatus equipped with eight WC cubes as the second-stage anvils. The pressure generation against applied load for the experimental assemblage was examined by phase transition of Bi, quartz, forsterite under different P-T conditions. To check the data validity of this new system, electrical conductivities of the serpentinites and talc samples were measured. The results are consistent with the published data of the same samples. Electrical conductivity (σ) of the San Carlos olivine aggregates and temperature (T) satisfy the Arrhenian formula: σ=σ0exp[-(△E+P△V)/kT]. The pre-exponential factor (σ0), activation energy (AE) and activation volume (AV) yield value of 7.74 S/m, 0.85 eV and 0.94 cm^3/mol, respectively. Electrical conductivities of the San Carlos olivine aggregates decline with increasing pressure at same temperatures. The negative pressure effect can be interpreted by strain energy model of defect energy together with the lattice deformation. In addition, the electrical conductivity-depth 1-D profile of the upper mantle was constructed based on our results and some assumptions. The calculated profile is concordant with the geophysical observation at the depth of 180-350 km beneath Europe, which indicates that the upper mantle beneath Europe might be dry.
基金financially supported by the annual budget of Bayerisches Geoinstitut to H.Fei and the German Research Foundation (DFG) to T.Katsura (KA3434/3-1,KA3434/3-2,KA3434/7-1,KA3434/8-1,and KA3434/9-1)。
文摘The oxygen fugacity(f_(O2)) may affect the ionic conductivity of olivine under upper mantle conditions because Mg vacancies can be produced in the crystal structure by the oxidization of iron from Fe^(2+) to Fe3+. Here we investigated olivine ionic conductivity at 4 GPa, as a function of temperature, crystallographic orientation, and oxygen fugacity, corresponding to the topmost asthenospheric conditions. The results demonstrate that the ionic conductivity is insensitive to f_(O2) under relatively reduced conditions(f_(O2) below Re-ReO_(2) buffer), whereas it has a clear f_(O2)-dependence under relatively oxidized conditions(f_(O2) around the magnetite-hematite buffer). The ionic conduction in olivine may contribute significantly to the conductivity anomaly in the topmost asthenosphere especially at relatively oxidized conditions.
文摘Using recent data of geoscience transaction in Northeast China, the author analyses and studies the crust-upper mantle structure feature of the North Tanlu fault zone. The result shows the crust-mantle structure are obvious difference at both sides of the North Tanlu fault zone. The fault activity and segmentation are closely related with abruptly change zone of the crust-upper mantle structure. There is a clear mirror image relationship between the big geomorphic shape and asthenosphere undulate, the former restricts tectonic stability and tectonic style of dif- ferent crustal units. The significantly strengthening seismicity of north set and south set in the North Tanlu fault zone just correspond to the low-velocity and high conductivity layer of crust-upper mantle. In the North Tanlu fault zone, the main controlling structure of the mid-strong seismic generally consists of the active fault sectors, whose crust-mantle structure is more complicated in rigidity massif.
文摘This paper is the first one of a series of three papers on the fluid evolution of the crust-upper mantle and the causes of earthquakes. Their relationship between the deep-seated fluids and the seismic activities are discussed from aspects of their macoscopic scale, microscopic mechanism and dynamic behaviors in the three papers respectively. Based on magnetotelluric sounding (MT) measurements conducted by Chinese geophysicists in more than 20 years, the maps of the upper mantle conductive layer (MCL) with a buried depth of>50 km and the crustal conductive layer (CCL) with a buried depth of >15 km in the Chinese mainland are Presented in this paper. The resistivity structure, the causes of conductive layers in crust-mantle and the relationships between earthquake distribution and conductive layers are discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 40473034, 40404007, 10574055 and 50532020, and the National Basic Research Programme of China under Grant No 2005CB724404.
文摘The electrical conductivity of molten olivine is studied up to 3720K and 13.2 GPa. The results indicate that the electrical conductivity of molten olivine exhibits the perfect Arrhenius behaviour. The activation energy as well as temperature effect is much smaller than that of the solid olivine. It is expected that the high conductivity zone in the mantle is almost independent of the melting based on our experimental data.