期刊文献+
共找到24,477篇文章
< 1 2 250 >
每页显示 20 50 100
应用互联网 创造生产力——Cisco Networkers 2001火爆京城
1
作者 谷爽 《通信世界》 2001年第36期25-25,共1页
关键词 Cisco公司 networkers 互联网 网络技术 IP语音 光技术
下载PDF
Networkers用户大会在中国
2
《计算机》 2001年第50期29-29,共1页
关键词 networkers 用户大会 网络技术 无线局域网 光传输系统
下载PDF
思科Networkers用户大会网络技术的奥林匹克盛会
3
《计算机》 2001年第50期29-29,共1页
关键词 思科公司 networkers 网络技术 IP路由器
下载PDF
CiscoNetworkers’99用户大会在京举办
4
作者 赵洪文 《计算机与网络》 1999年第19期3-3,共1页
Cisco Networkers’99用户大会近日在京举行。来自思科系统公司的高级技术专家和国内外联网工业界人士及典型用户千余人欢聚一堂。 在开幕式上,思科系统(中国)网络技术有限公司总裁杜家滨先生作了题为“Cisco:致力于客户的成功”的主题... Cisco Networkers’99用户大会近日在京举行。来自思科系统公司的高级技术专家和国内外联网工业界人士及典型用户千余人欢聚一堂。 在开幕式上,思科系统(中国)网络技术有限公司总裁杜家滨先生作了题为“Cisco:致力于客户的成功”的主题演讲。 本次大会创立了一套系统的网络培训课程,根据各行业的特点及与会人员网络知识水平的高低,提供数十场研讨会和40多个不同层次的技术讲座,为业界同行提供了一个良好的学习环境。 在Networkers’99北京现场,思科系统公司还专设了产品展示厅,使与会者能接触到思科系统公司的最新技术产品。现场还设立了网络设计诊所,让与会者有机会与Cisco认证网络专家面对面进行探讨交流。 展开更多
关键词 Cisco认证 NETWORK 系统公司 网络设计 培训课程 网络技术 学习环境 普通话 探讨交流 产品展示
下载PDF
Generation of brain vascular heterogeneity:recent advances from the perspective of angiogenesis
5
作者 Nathanael J.Lee Ryota L.Matsuoka 《Neural Regeneration Research》 SCIE CAS 2025年第7期2013-2014,共2页
Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose a... Heterogeneous proper t i es of vascular endothelial cells in the brain:The brain displays large energy dynamics and consumption,and this high level of metabolic demands is fulfilled by a continuous supply of glucose and oxygen through its vascular networks.Brain vasculature consists of highly divergent blood vessel branches,giving rise to a dense network of capillaries that supply blood to all cells across the brain.This elaborated vascular network is thought to develop via angiogenesis,a process in which new blood vessels grow from pre-existing vasculature.Brain capillaries exhibit organotypic features distinct from other tissues and are formed primarily by two major endothelial cell(EC)types:those that form the semi-permeable blood-brain barrier(BBB)and those that develop highly permeable pores known as fenestrae(Matsuoka et al.,2022).The structural and functional differences between BBB and fenestrated vascular ECs represent a fundamental feature of brain vasculature and form the foundation for both brain function and homeostasis. 展开更多
关键词 ANGIOGENESIS HOMEOSTASIS network
下载PDF
Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain
6
作者 Takahiko Nagamine 《World Journal of Clinical Cases》 SCIE 2025年第3期66-68,共3页
Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the u... Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body.Recently,efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality(VR)technology.VR has been demonstrated to be an effective treatment for pain associated with medical procedures,as well as for chronic pain conditions for which no effective treatment has been established.The precise mechanism by which the diversion from reality facilitated by VR contributes to the diminution of pain and anxiety has yet to be elucidated.However,the provision of positive images through VR-based visual stimulation may enhance the functionality of brain networks.The salience network is diminished,while the default mode network is enhanced.Additionally,the medial prefrontal cortex may establish a stronger connection with the default mode network,which could result in a reduction of pain and anxiety.Further research into the potential of VR technology to alleviate pain could lead to a reduction in the number of individuals who overdose on painkillers and contribute to positive change in the medical field. 展开更多
关键词 Virtual reality PAIN ANXIETY Salience network Default mode network
下载PDF
Neurogenesis dynamics in the olfactory bulb:deciphering circuitry organization, function, and adaptive plasticity
7
作者 Moawiah M.Naffaa 《Neural Regeneration Research》 SCIE CAS 2025年第6期1565-1581,共17页
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inh... Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover,the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior. 展开更多
关键词 network adaptability NEUROGENESIS neuronal communication olfactory bulb olfactory learning olfactory memory synaptic plasticity
下载PDF
Deciphering the molecular mechanisms of Simiaowan in the treatment of hyperuricemia: in vivo and in silico approaches
8
作者 Yong-Chang Zeng Jun-Hong Wu +6 位作者 Dan-Dan Xu Kang He Chang-Qing Liu Li-Fei Song Zheng-Zhi Wu Qian-Qian Jiang Shao-Yu Liang 《Traditional Medicine Research》 2025年第2期37-54,共18页
Background:Simiaowan(SMW),a well-known traditional Chinese medicine,has been employed to treat hyperuricemia(HUA)and gout for centuries.However,the bioactive components and underlying mechanisms have not been elucidat... Background:Simiaowan(SMW),a well-known traditional Chinese medicine,has been employed to treat hyperuricemia(HUA)and gout for centuries.However,the bioactive components and underlying mechanisms have not been elucidated.The objective of this study was to identify the active components and potential mechanisms of SMW by integrating pharmacological experimentation,serum pharmacochemistry,network pharmacology and molecular docking.Methods:HUA rats modelling by high-fat/high-sugar diet and potassium oxonate/adenine oral administration were used to evaluate the pharmacodynamic effects of SMW.UPLC-Q-Exactive-MS/MS was employed to detect the bioactive components present in SMW-containing serum.Network pharmacology and molecular docking were utilized to elucidate the potential targets and underlying mechanisms.Results:SMW effectively ameliorated HUA rats via the inhibition of uric acid(UA)production,promotion of UA excretion,improvement of lipid and glucose metabolic abnormalities,antioxidant,anti-inflammatory and anti-insulin resistance effects.A total of 73 compounds detected in SMW-containing serum were identified as potential active components,with alkaloids,flavonoids,organic acids,and terpenoids emerging as the primary active ingredients.Totally 203 corresponding targets were obtained as SMW anti-HUA/gout targets,which mainly participated in apoptosis,insulin resistance,TNF,PI3K-Akt,HIF-1,NF-κB,MAPK,IL-17 and TLR signaling pathways.Molecular docking indicated that active compounds(e.g.berberine,phellodendrine,quercetin,formononetin,ferulic acid)had superior binding abilities to the key targets(e.g.solute carrier family 22 member 12(URAT1),solute carrier family 22 member 6(OAT1),ATP-binding cassette sub-family G member 2(ABCG2),solute carrier family 2,facilitated glucose transporter member 9(GLUT9),xanthine dehydrogenase/oxidase(XDH),transcription factor p65(RELA),toll-like receptor 4(TLR4),prostaglandin G/H synthase 2(PTGS2),caspase-3(CASP3),insulin(INS)).Conclusion:SMW exerted regulatory influence over the disease network of HUA and gout through a multiplicity of components,targets,and pathways.Alkaloids,flavonoids,organic acids,and terpenoids were the primary active components,exerting anti-HUA/gout effects via antioxidant,anti-inflammatory,anti-insulin resistance,anti-apoptosis,inhibition of UA production,and promotion of UA excretion.This study revealed the active components and molecular mechanisms of SMW,providing insights into the development of natural products derived from SMW. 展开更多
关键词 HYPERURICEMIA network pharmacology serum pharmacochemistry Simiaowan UPLC-Q-Exactive-MS/MS
下载PDF
Resting-state brain network remodeling after different nerve reconstruction surgeries:a functional magnetic resonance imaging study in brachial plexus injury rats
9
作者 Yunting Xiang Xiangxin Xing +6 位作者 Xuyun Hua Yuwen Zhang Xin Xue Jiajia Wu Mouxiong Zheng He Wang Jianguang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1495-1504,共10页
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev... Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery. 展开更多
关键词 brain functional networks end-to-end nerve transfer end-to-side nerve transfer independent component analysis nerve repair peripheral plexus injury resting-state functional connectivity
下载PDF
Unlocking the future:Mitochondrial genes and neural networks in predicting ovarian cancer prognosis and immunotherapy response
10
作者 Zhi-Jian Tang Yuan-Ming Pan +2 位作者 Wei Li Rui-Qiong Ma Jian-Liu Wang 《World Journal of Clinical Oncology》 2025年第1期43-52,共10页
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose... BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies. 展开更多
关键词 Ovarian cancer MITOCHONDRIA PROGNOSIS IMMUNOTHERAPY Neural network
下载PDF
2002~2022年北京大气气溶胶光学特性的地基遥感连续观测
11
作者 陈洪滨 施红蓉 +1 位作者 范学花 夏祥鳌 《大气科学》 CSCD 北大核心 2024年第1期347-358,共12页
长时间序列的气溶胶光学特性观测资料是定量研究气溶胶辐射和气候效应的重要基础,也是空气质量和环境健康研究的重要数据来源。本文系统评述了全球AERONET(Aerosol Robotic Network)观测网,并介绍了我国最长观测时间的AEROENT北京站发... 长时间序列的气溶胶光学特性观测资料是定量研究气溶胶辐射和气候效应的重要基础,也是空气质量和环境健康研究的重要数据来源。本文系统评述了全球AERONET(Aerosol Robotic Network)观测网,并介绍了我国最长观测时间的AEROENT北京站发展状况和一些研究成果;使用北京站长达20余年的观测数据,针对AERONET观测网的光学辐射产品的多时间尺度变化特征进行系统分析,讨论了长期观测的重要性和迫切性。 展开更多
关键词 气溶胶 光学特性 AERONET(Aerosol Robotic Network)北京站 气候效应
下载PDF
改进注意力机制嵌入PR-Net模型的水稻病害识别仿真
12
作者 路阳 刘鹏飞 +3 位作者 许思源 刘启旺 顾福谦 王鹏 《系统仿真学报》 CAS CSCD 北大核心 2024年第6期1322-1333,共12页
针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,... 针对现有的CNN模型在水稻叶部病害的识别中准确率较低的问题,提出了一种结合并行结构和残差结构的混合卷积神经网络模型PRC-Net(parallel residual with coordinate attention network)。引入并行结构,提高卷积的感受野;结合残差结构,使特征信息完整的连续传递;在骨干模型PR-Net中嵌入改进的空间注意力机制,增强对不同尺度病斑特征信息的凝聚程度;为进一步提升病害识别的准确率,并减少模型的训练时间和推理时间,通过改变加权方式对模型结构进行优化。仿真结果表明:与InceptionResNetV2等分类模型相比,PRC-Net具有更少的训练参数、更短的训练时间和更高的识别精度,性能优于其他作物病害识别模型。 展开更多
关键词 水稻叶部病害 PRC-Net(parallel residual with coordinate attention network) 卷积神经网络 注意力机制 图像识别
下载PDF
基于GRU-DRSN的双通道人体活动识别
13
作者 邵小强 原泽文 +3 位作者 杨永德 刘士博 李鑫 韩泽辉 《科学技术与工程》 北大核心 2024年第2期676-683,共8页
人体活动识别(human activity recognizition, HAR)在医疗、军工、智能家居等领域有很大的应用空间。传统机器学习方法特征提取难度较大且精度不高。针对上述问题并结合传感器时序特性,提出了一种融合CBAM(convolutional block attentio... 人体活动识别(human activity recognizition, HAR)在医疗、军工、智能家居等领域有很大的应用空间。传统机器学习方法特征提取难度较大且精度不高。针对上述问题并结合传感器时序特性,提出了一种融合CBAM(convolutional block attention module)注意力机制的GRU-DRSN双通道并行模型,有效避免了传统串行模型因网络深度加深引起梯度爆炸和消失问题。同时并行结构使得两条支路具有相同的优先级,使用深度残差收缩网络(deep residual shrinkage network, DRSN)提取数据的深层空间特征,同时使用门控循环结构(gated recurrent unit, GRU)学习活动样本在时间序列上的特征,同时进行提取样本不同维度的特征,并通过CBAM模块进行特征的权重分配,最后通过Softmax层进行识别,实现了端对端的人体活动识别。使用公开数据集(wireless sensor data mining, WISDM)进行验证,模型平均精度达到了97.6%,与传统机器学习模型和前人所提神经网络模型相比,有更好的识别效果。 展开更多
关键词 人体活动识别(human activity recognizition HAR) 门控循环结构(gated recurrent unit GRU) 深度残差收缩网络(deep residual shrinkage network DRSN) CBAM 双通道并行
下载PDF
Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning 被引量:5
14
作者 Xiaolu Li Ye Yang +3 位作者 Senming Xu Yuchang Gui Jianmin Chen Jianwen Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2723-2734,共12页
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s... Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022). 展开更多
关键词 bioinformatics analysis BIOMARKER CIBERSORT GEO dataset LASSO miRNA-mRNA network RNA sequencing spinal cord injury SVM-RFE weighted gene co-expression network analysis
下载PDF
TDSC-Net:一种基于注意力机制与特征融合的二维恒星光谱分类模型
15
作者 李荣 曹冠龙 +4 位作者 蒲源 邱波 王晓敏 闫静 王坤 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第7期1968-1973,共6页
面对信噪比较低的天体,传统一维光谱的分类效果很差。因此,从二维光谱出发,提出了结合注意力机制的特征融合模型TDSC-Net(two-dimensional spectra classification network)用于恒星分类。TDSC-Net通过完全相同的特征提取层分别对恒星... 面对信噪比较低的天体,传统一维光谱的分类效果很差。因此,从二维光谱出发,提出了结合注意力机制的特征融合模型TDSC-Net(two-dimensional spectra classification network)用于恒星分类。TDSC-Net通过完全相同的特征提取层分别对恒星蓝端和红端的二维光谱图像进行特征提取,之后针对这些特征进行融合,然后进行分类。本文实验中的恒星光谱数据选自LAMOST(the large sky area multi-object fiber spectroscopic telescope)数据库,预处理采用Z-score进行光谱归一化,以减少由于光谱流量值差别大造成的模型收敛困难问题。使用精确率(Precision)、召回率(Recall)、F1-score和准确率(Accuracy)四个指标来评估模型性能。实验包括:第一部分利用TDSC-Net进行A、F、G、K、M型恒星分类,以验证利用二维光谱对恒星多分类的可靠性;第二部分将二维光谱按照不同的信噪比区间进行分类,以探究信噪比对分类准确率的影响。第一部分的结果表明,进行五分类总的准确率达到84.3%。其中,A、F、G、K、M各自的分类精度分别为87.0%,84.6%,81.2%,87.4%,89.7%,均优于自行抽谱后的一维光谱分类结果。第二部分的结果表明,即使在SNR<30的低信噪比区间,二维光谱分类准确率仍然可以达到78.9%;而当SNR>30之后,信噪比对光谱分类的影响就不明显了。由此证明了低信噪比时使用二维光谱分类的重要性以及TDSC-Net对恒星光谱分类的有效性。 展开更多
关键词 恒星分类 卷积神经网络 注意力机制 Two-dimensional spectra classification network
下载PDF
Pluggable multitask diffractive neural networks based on cascaded metasurfaces 被引量:4
16
作者 Cong He Dan Zhao +8 位作者 Fei Fan Hongqiang Zhou Xin Li Yao Li Junjie Li Fei Dong Yin-Xiao Miao Yongtian Wang Lingling Huang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第2期23-31,共9页
Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been c... Optical neural networks have significant advantages in terms of power consumption,parallelism,and high computing speed,which has intrigued extensive attention in both academic and engineering communities.It has been considered as one of the powerful tools in promoting the fields of imaging processing and object recognition.However,the existing optical system architecture cannot be reconstructed to the realization of multi-functional artificial intelligence systems simultaneously.To push the development of this issue,we propose the pluggable diffractive neural networks(P-DNN),a general paradigm resorting to the cascaded metasurfaces,which can be applied to recognize various tasks by switching internal plug-ins.As the proof-of-principle,the recognition functions of six types of handwritten digits and six types of fashions are numerical simulated and experimental demonstrated at near-infrared regimes.Encouragingly,the proposed paradigm not only improves the flexibility of the optical neural networks but paves the new route for achieving high-speed,low-power and versatile artificial intelligence systems. 展开更多
关键词 optical neural networks diffractive deep neural networks cascaded metasurfaces
下载PDF
Social-ecological perspective on the suicidal behaviour factors of early adolescents in China:a network analysis 被引量:4
17
作者 Yuan Li Peiying Li +5 位作者 Mengyuan Yuan Yonghan Li Xueying Zhang Juan Chen Gengfu Wang Puyu Su 《General Psychiatry》 CSCD 2024年第1期143-150,共8页
Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To expl... Background In early adolescence,youth are highly prone to suicidal behaviours.Identifying modifiable risk factors during this critical phase is a priority to inform effective suicide prevention strategies.Aims To explore the risk and protective factors of suicidal behaviours(ie,suicidal ideation,plans and attempts)in early adolescence in China using a social-ecological perspective.Methods Using data from the cross-sectional project‘Healthy and Risky Behaviours Among Middle School Students in Anhui Province,China',stratified random cluster sampling was used to select 5724 middle school students who had completed self-report questionnaires in November 2020.Network analysis was employed to examine the correlates of suicidal ideation,plans and attempts at four levels,namely individual(sex,academic performance,serious physical llness/disability,history of self-harm,depression,impulsivity,sleep problems,resilience),family(family economic status,relationship with mother,relationship with father,family violence,childhood abuse,parental mental illness),school(relationship with teachers,relationship with classmates,school-bullying victimisation and perpetration)and social(social support,satisfaction with society).Results In total,37.9%,19.0%and 5.5%of the students reported suicidal ideation,plans and attempts in the past 6 months,respectively.The estimated network revealed that suicidal ideation,plans and attempts were collectively associated with a history of self-harm,sleep problems,childhood abuse,school bullying and victimisation.Centrality analysis indicated that the most influential nodes in the network were history of self-harm and childhood abuse.Notably,the network also showed unique correlates of suicidal ideation(sex,weight=0.60;impulsivity,weight=0.24;family violence,weight=0.17;relationship with teachers,weight=-0.03;school-bullying perpetration,weight=0.22),suicidal plans(social support,weight=-0.15)and suicidal attempts(relationship with mother,weight=-0.10;parental mental llness,weight=0.61).Conclusions This study identified the correlates of suicidal ideation,plans and attempts,and provided practical implications for suicide prevention for young adolescents in China.Firstly,this study highlighted the importance of joint interventions across multiple departments.Secondly,the common risk factors of suicidal ideation,plans and attempts were elucidated.Thirdly,this study proposed target interventions to address the unique influencing factors of suicidal ideation,plans and attempts. 展开更多
关键词 NETWORK ANALYSIS PREVENTION
下载PDF
Artificial intelligence-assisted repair of peripheral nerve injury: a new research hotspot and associated challenges 被引量:2
18
作者 Yang Guo Liying Sun +3 位作者 Wenyao Zhong Nan Zhang Zongxuan Zhao Wen Tian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期663-670,共8页
Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on p... Artificial intelligence can be indirectly applied to the repair of peripheral nerve injury.Specifically,it can be used to analyze and process data regarding peripheral nerve injury and repair,while study findings on peripheral nerve injury and repair can provide valuable data to enrich artificial intelligence algorithms.To investigate advances in the use of artificial intelligence in the diagnosis,rehabilitation,and scientific examination of peripheral nerve injury,we used CiteSpace and VOSviewer software to analyze the relevant literature included in the Web of Science from 1994–2023.We identified the following research hotspots in peripheral nerve injury and repair:(1)diagnosis,classification,and prognostic assessment of peripheral nerve injury using neuroimaging and artificial intelligence techniques,such as corneal confocal microscopy and coherent anti-Stokes Raman spectroscopy;(2)motion control and rehabilitation following peripheral nerve injury using artificial neural networks and machine learning algorithms,such as wearable devices and assisted wheelchair systems;(3)improving the accuracy and effectiveness of peripheral nerve electrical stimulation therapy using artificial intelligence techniques combined with deep learning,such as implantable peripheral nerve interfaces;(4)the application of artificial intelligence technology to brain-machine interfaces for disabled patients and those with reduced mobility,enabling them to control devices such as networked hand prostheses;(5)artificial intelligence robots that can replace doctors in certain procedures during surgery or rehabilitation,thereby reducing surgical risk and complications,and facilitating postoperative recovery.Although artificial intelligence has shown many benefits and potential applications in peripheral nerve injury and repair,there are some limitations to this technology,such as the consequences of missing or imbalanced data,low data accuracy and reproducibility,and ethical issues(e.g.,privacy,data security,research transparency).Future research should address the issue of data collection,as large-scale,high-quality clinical datasets are required to establish effective artificial intelligence models.Multimodal data processing is also necessary,along with interdisciplinary collaboration,medical-industrial integration,and multicenter,large-sample clinical studies. 展开更多
关键词 artificial intelligence artificial prosthesis medical-industrial integration brain-machine interface deep learning machine learning networked hand prosthesis neural interface neural network neural regeneration peripheral nerve
下载PDF
IDS-INT:Intrusion detection system using transformer-based transfer learning for imbalanced network traffic 被引量:3
19
作者 Farhan Ullah Shamsher Ullah +1 位作者 Gautam Srivastava Jerry Chun-Wei Lin 《Digital Communications and Networks》 SCIE CSCD 2024年第1期190-204,共15页
A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a... A network intrusion detection system is critical for cyber security against llegitimate attacks.In terms of feature perspectives,network traffic may include a variety of elements such as attack reference,attack type,a subcategory of attack,host information,malicious scripts,etc.In terms of network perspectives,network traffic may contain an imbalanced number of harmful attacks when compared to normal traffic.It is challenging to identify a specific attack due to complex features and data imbalance issues.To address these issues,this paper proposes an Intrusion Detection System using transformer-based transfer learning for Imbalanced Network Traffic(IDS-INT).IDS-INT uses transformer-based transfer learning to learn feature interactions in both network feature representation and imbalanced data.First,detailed information about each type of attack is gathered from network interaction descriptions,which include network nodes,attack type,reference,host information,etc.Second,the transformer-based transfer learning approach is developed to learn detailed feature representation using their semantic anchors.Third,the Synthetic Minority Oversampling Technique(SMOTE)is implemented to balance abnormal traffic and detect minority attacks.Fourth,the Convolution Neural Network(CNN)model is designed to extract deep features from the balanced network traffic.Finally,the hybrid approach of the CNN-Long Short-Term Memory(CNN-LSTM)model is developed to detect different types of attacks from the deep features.Detailed experiments are conducted to test the proposed approach using three standard datasets,i.e.,UNsWNB15,CIC-IDS2017,and NSL-KDD.An explainable AI approach is implemented to interpret the proposed method and develop a trustable model. 展开更多
关键词 Network intrusion detection Transfer learning Features extraction Imbalance data Explainable AI CYBERSECURITY
下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:3
20
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部