期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
LKMT:Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English
1
作者 Muhammad Naeem Ul Hassan Zhengtao Yu +4 位作者 Jian Wang Ying Li Shengxiang Gao Shuwan Yang Cunli Mao 《Computers, Materials & Continua》 SCIE EI 2024年第10期951-969,共19页
Thanks to the strong representation capability of pre-trained language models,supervised machine translation models have achieved outstanding performance.However,the performances of these models drop sharply when the ... Thanks to the strong representation capability of pre-trained language models,supervised machine translation models have achieved outstanding performance.However,the performances of these models drop sharply when the scale of the parallel training corpus is limited.Considering the pre-trained language model has a strong ability for monolingual representation,it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models.To alleviate the dependence on the parallel corpus,we propose a Linguistics Knowledge-Driven MultiTask(LKMT)approach to inject part-of-speech and syntactic knowledge into pre-trained models,thus enhancing the machine translation performance.On the one hand,we integrate part-of-speech and dependency labels into the embedding layer and exploit large-scale monolingual corpus to update all parameters of pre-trained language models,thus ensuring the updated language model contains potential lexical and syntactic information.On the other hand,we leverage an extra self-attention layer to explicitly inject linguistic knowledge into the pre-trained language model-enhanced machine translation model.Experiments on the benchmark dataset show that our proposed LKMT approach improves the Urdu-English translation accuracy by 1.97 points and the English-Urdu translation accuracy by 2.42 points,highlighting the effectiveness of our LKMT framework.Detailed ablation experiments confirm the positive impact of part-of-speech and dependency parsing on machine translation. 展开更多
关键词 Urdu NMT(neural machine translation) Urdu natural language processing Urdu Linguistic features low resources language linguistic features pretrain model
下载PDF
Neural Machine Translation Models with Attention-Based Dropout Layer
2
作者 Huma Israr Safdar Abbas Khan +3 位作者 Muhammad Ali Tahir Muhammad Khuram Shahzad Muneer Ahmad Jasni Mohamad Zain 《Computers, Materials & Continua》 SCIE EI 2023年第5期2981-3009,共29页
In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art perfo... In bilingual translation,attention-based Neural Machine Translation(NMT)models are used to achieve synchrony between input and output sequences and the notion of alignment.NMT model has obtained state-of-the-art performance for several language pairs.However,there has been little work exploring useful architectures for Urdu-to-English machine translation.We conducted extensive Urdu-to-English translation experiments using Long short-term memory(LSTM)/Bidirectional recurrent neural networks(Bi-RNN)/Statistical recurrent unit(SRU)/Gated recurrent unit(GRU)/Convolutional neural network(CNN)and Transformer.Experimental results show that Bi-RNN and LSTM with attention mechanism trained iteratively,with a scalable data set,make precise predictions on unseen data.The trained models yielded competitive results by achieving 62.6%and 61%accuracy and 49.67 and 47.14 BLEU scores,respectively.From a qualitative perspective,the translation of the test sets was examined manually,and it was observed that trained models tend to produce repetitive output more frequently.The attention score produced by Bi-RNN and LSTM produced clear alignment,while GRU showed incorrect translation for words,poor alignment and lack of a clear structure.Therefore,we considered refining the attention-based models by defining an additional attention-based dropout layer.Attention dropout fixes alignment errors and minimizes translation errors at the word level.After empirical demonstration and comparison with their counterparts,we found improvement in the quality of the resulting translation system and a decrease in the perplexity and over-translation score.The ability of the proposed model was evaluated using Arabic-English and Persian-English datasets as well.We empirically concluded that adding an attention-based dropout layer helps improve GRU,SRU,and Transformer translation and is considerably more efficient in translation quality and speed. 展开更多
关键词 Natural language processing neural machine translation word embedding ATTENTION PERPLEXITY selective dropout regularization URDU PERSIAN Arabic BLEU
下载PDF
Neural Machine Translation by Fusing Key Information of Text
3
作者 Shijie Hu Xiaoyu Li +8 位作者 Jiayu Bai Hang Lei Weizhong Qian Sunqiang Hu Cong Zhang Akpatsa Samuel Kofi Qian Qiu Yong Zhou Shan Yang 《Computers, Materials & Continua》 SCIE EI 2023年第2期2803-2815,共13页
When the Transformer proposed by Google in 2017,it was first used for machine translation tasks and achieved the state of the art at that time.Although the current neural machine translation model can generate high qu... When the Transformer proposed by Google in 2017,it was first used for machine translation tasks and achieved the state of the art at that time.Although the current neural machine translation model can generate high quality translation results,there are still mistranslations and omissions in the translation of key information of long sentences.On the other hand,the most important part in traditional translation tasks is the translation of key information.In the translation results,as long as the key information is translated accurately and completely,even if other parts of the results are translated incorrect,the final translation results’quality can still be guaranteed.In order to solve the problem of mistranslation and missed translation effectively,and improve the accuracy and completeness of long sentence translation in machine translation,this paper proposes a key information fused neural machine translation model based on Transformer.The model proposed in this paper extracts the keywords of the source language text separately as the input of the encoder.After the same encoding as the source language text,it is fused with the output of the source language text encoded by the encoder,then the key information is processed and input into the decoder.With incorporating keyword information from the source language sentence,the model’s performance in the task of translating long sentences is very reliable.In order to verify the effectiveness of the method of fusion of key information proposed in this paper,a series of experiments were carried out on the verification set.The experimental results show that the Bilingual Evaluation Understudy(BLEU)score of the model proposed in this paper on theWorkshop on Machine Translation(WMT)2017 test dataset is higher than the BLEU score of Transformer proposed by Google on the WMT2017 test dataset.The experimental results show the advantages of the model proposed in this paper. 展开更多
关键词 Key information TRANSFORMER FUSION neural machine translation
下载PDF
Improvements of Google Neural Machine Translation
4
作者 李瑞 蒋美佳 《海外英语》 2017年第15期132-134,共3页
Machine Translation has been playing an important role in modern society due to its effectiveness and efficiency,but the great demand for corpus makes it difficult for users to use traditional Machine Translation syst... Machine Translation has been playing an important role in modern society due to its effectiveness and efficiency,but the great demand for corpus makes it difficult for users to use traditional Machine Translation systems.To solve this problem and improve translation quality,in November 2016,Google introduces Google Neural Machine Translation system,which implements the latest techniques to achieve better outcomes.The conspicuous achievement has been proved by experiments using BLEU score to measure performance of different systems.With GNMT,the gap between human and machine translation is narrowing. 展开更多
关键词 machine translation machine translation improvement translation google neural machine translation neural machine translation
下载PDF
Corpus Augmentation for Improving Neural Machine Translation 被引量:2
5
作者 Zijian Li Chengying Chi Yunyun Zhan 《Computers, Materials & Continua》 SCIE EI 2020年第7期637-650,共14页
The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the per... The translation quality of neural machine translation(NMT)systems depends largely on the quality of large-scale bilingual parallel corpora available.Research shows that under the condition of limited resources,the performance of NMT is greatly reduced,and a large amount of high-quality bilingual parallel data is needed to train a competitive translation model.However,not all languages have large-scale and high-quality bilingual corpus resources available.In these cases,improving the quality of the corpora has become the main focus to increase the accuracy of the NMT results.This paper proposes a new method to improve the quality of data by using data cleaning,data expansion,and other measures to expand the data at the word and sentence-level,thus improving the richness of the bilingual data.The long short-term memory(LSTM)language model is also used to ensure the smoothness of sentence construction in the process of sentence construction.At the same time,it uses a variety of processing methods to improve the quality of the bilingual data.Experiments using three standard test sets are conducted to validate the proposed method;the most advanced fairseq-transformer NMT system is used in the training.The results show that the proposed method has worked well on improving the translation results.Compared with the state-of-the-art methods,the BLEU value of our method is increased by 2.34 compared with that of the baseline. 展开更多
关键词 neural machine translation corpus argumentation model improvement deep learning data cleaning
下载PDF
Dependency-Based Local Attention Approach to Neural Machine Translation 被引量:2
6
作者 Jing Qiu Yan Liu +4 位作者 Yuhan Chai Yaqi Si Shen Su Le Wang Yue Wu 《Computers, Materials & Continua》 SCIE EI 2019年第5期547-562,共16页
Recently dependency information has been used in different ways to improve neural machine translation.For example,add dependency labels to the hidden states of source words.Or the contiguous information of a source wo... Recently dependency information has been used in different ways to improve neural machine translation.For example,add dependency labels to the hidden states of source words.Or the contiguous information of a source word would be found according to the dependency tree and then be learned independently and be added into Neural Machine Translation(NMT)model as a unit in various ways.However,these works are all limited to the use of dependency information to enrich the hidden states of source words.Since many works in Statistical Machine Translation(SMT)and NMT have proven the validity and potential of using dependency information.We believe that there are still many ways to apply dependency information in the NMT structure.In this paper,we explore a new way to use dependency information to improve NMT.Based on the theory of local attention mechanism,we present Dependency-based Local Attention Approach(DLAA),a new attention mechanism that allowed the NMT model to trace the dependency words related to the current translating words.Our work also indicates that dependency information could help to supervise attention mechanism.Experiment results on WMT 17 Chineseto-English translation task shared training datasets show that our model is effective and perform distinctively on long sentence translation. 展开更多
关键词 neural machine translation attention mechanism dependency parsing
下载PDF
A Novel Beam Search to Improve Neural Machine Translation for English-Chinese 被引量:1
7
作者 Xinyue Lin Jin Liu +1 位作者 Jianming Zhang Se-Jung Lim 《Computers, Materials & Continua》 SCIE EI 2020年第10期387-404,共18页
Neural Machine Translation(NMT)is an end-to-end learning approach for automated translation,overcoming the weaknesses of conventional phrase-based translation systems.Although NMT based systems have gained their popul... Neural Machine Translation(NMT)is an end-to-end learning approach for automated translation,overcoming the weaknesses of conventional phrase-based translation systems.Although NMT based systems have gained their popularity in commercial translation applications,there is still plenty of room for improvement.Being the most popular search algorithm in NMT,beam search is vital to the translation result.However,traditional beam search can produce duplicate or missing translation due to its target sequence selection strategy.Aiming to alleviate this problem,this paper proposed neural machine translation improvements based on a novel beam search evaluation function.And we use reinforcement learning to train a translation evaluation system to select better candidate words for generating translations.In the experiments,we conducted extensive experiments to evaluate our methods.CASIA corpus and the 1,000,000 pairs of bilingual corpora of NiuTrans are used in our experiments.The experiment results prove that the proposed methods can effectively improve the English to Chinese translation quality. 展开更多
关键词 neural machine translation beam search reinforcement learning
下载PDF
Neural machine translation:Challenges,progress and future 被引量:11
8
作者 ZHANG JiaJun ZONG ChengQing 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第10期2028-2050,共23页
Machine translation(MT)is a technique that leverages computers to translate human languages automatically.Nowadays,neural machine translation(NMT)which models direct mapping between source and target languages with de... Machine translation(MT)is a technique that leverages computers to translate human languages automatically.Nowadays,neural machine translation(NMT)which models direct mapping between source and target languages with deep neural networks has achieved a big breakthrough in translation performance and become the de facto paradigm of MT.This article makes a review of NMT framework,discusses the challenges in NMT,introduces some exciting recent progresses and finally looks forward to some potential future research trends. 展开更多
关键词 neural machine translation TRANSFORMER multimodal translation low-resource translation document translation
原文传递
Research on system combination of machine translation based on Transformer
9
作者 刘文斌 HE Yanqing +1 位作者 LAN Tian WU Zhenfeng 《High Technology Letters》 EI CAS 2023年第3期310-317,共8页
Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of m... Influenced by its training corpus,the performance of different machine translation systems varies greatly.Aiming at achieving higher quality translations,system combination methods combine the translation results of multiple systems through statistical combination or neural network combination.This paper proposes a new multi-system translation combination method based on the Transformer architecture,which uses a multi-encoder to encode source sentences and the translation results of each system in order to realize encoder combination and decoder combination.The experimental verification on the Chinese-English translation task shows that this method has 1.2-2.35 more bilingual evaluation understudy(BLEU)points compared with the best single system results,0.71-3.12 more BLEU points compared with the statistical combination method,and 0.14-0.62 more BLEU points compared with the state-of-the-art neural network combination method.The experimental results demonstrate the effectiveness of the proposed system combination method based on Transformer. 展开更多
关键词 TRANSFORMER system combination neural machine translation(NMT) attention mechanism multi-encoder
下载PDF
Floating-gate based PN blending optoelectronic synaptic transistor for neural machine translation 被引量:1
10
作者 Xianghong Zhang Enlong Li +4 位作者 Rengjian Yu Lihua He Weijie Yu Huipeng Chen Tailiang Guo 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1383-1390,共8页
Neural machine translation, which has an encoder-decoder framework, is considered to be a feasible way for future machine translation. Nevertheless, with the fusion of multiple languages and the continuous emergence o... Neural machine translation, which has an encoder-decoder framework, is considered to be a feasible way for future machine translation. Nevertheless, with the fusion of multiple languages and the continuous emergence of new words, most current neural machine translation systems based on von Neumann’s architecture have seen a substantial increase in the number of devices for the decoder, resulting in high-energy consumption rate. Here, a multilevel photosensitive blending semiconductor optoelectronic synaptic transistor(MOST) with two different trapping mechanisms is firstly demonstrated, which exhibits 8 stable and well distinguishable states and synaptic behaviors such as excitatory postsynaptic current, short-term memory, and long-term memory are successfully mimicked under illumination in the wavelength range of 480–800 nm. More importantly, an optical decoder model based on MOST is successfully fabricated,which is the first application of neuromorphic device in the field of neural machine translation, significantly simplifying the structure of traditional neural machine translation system.Moreover, as a multi-level synaptic device, MOST can further reduce the number of components and simplify the structure of the codec model under light illumination. This work first applies the neuromorphic device to neural machine translation, and proposes a multi-level synaptic transistor as the based cell of decoding module, which would lay the foundation for breaking the bottleneck of machine translation. 展开更多
关键词 optoelectronic transistor synaptic transistor synaptic plasticity modulation neural machine translation decoder
原文传递
Document-Level Neural Machine Translation with Hierarchical Modeling of Global Context
11
作者 Xin Tan Long-Yin Zhang Guo-Dong Zhou 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第2期295-308,共14页
Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global conte... Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global context for documentlevel neural machine translation(NMT).This is done through a sentence encoder to capture intra-sentence dependencies and a document encoder to model document-level inter-sentence consistency and coherence.With this hierarchical architecture,we feedback the extracted document-level global context to each word in a top-down fashion to distinguish different translations of a word according to its specific surrounding context.Notably,we explore the effect of three popular attention functions during the information backward-distribution phase to take a deep look into the global context information distribution of our model.In addition,since large-scale in-domain document-level parallel corpora are usually unavailable,we use a two-step training strategy to take advantage of a large-scale corpus with out-of-domain parallel sentence pairs and a small-scale corpus with in-domain parallel document pairs to achieve the domain adaptability.Experimental results of our model on Chinese-English and English-German corpora significantly improve the Transformer baseline by 4.5 BLEU points on average which demonstrates the effectiveness of our proposed hierarchical model in document-level NMT. 展开更多
关键词 neural machine translation document-level translation global context hierarchical model
原文传递
Progress in Machine Translation 被引量:1
12
作者 Haifeng Wang Hua Wu +2 位作者 Zhongjun He Liang Huang Kenneth Ward Church 《Engineering》 SCIE EI CAS 2022年第11期143-153,共11页
After more than 70 years of evolution,great achievements have been made in machine translation.Especially in recent years,translation quality has been greatly improved with the emergence of neural machine translation(... After more than 70 years of evolution,great achievements have been made in machine translation.Especially in recent years,translation quality has been greatly improved with the emergence of neural machine translation(NMT).In this article,we first review the history of machine translation from rule-based machine translation to example-based machine translation and statistical machine translation.We then introduce NMT in more detail,including the basic framework and the current dominant framework,Transformer,as well as multilingual translation models to deal with the data sparseness problem.In addition,we introduce cutting-edge simultaneous translation methods that achieve a balance between translation quality and latency.We then describe various products and applications of machine translation.At the end of this article,we briefly discuss challenges and future research directions in this field. 展开更多
关键词 machine translation neural machine translation Simultaneous translation
下载PDF
Improving Low-Resource Machine Translation Using Reinforcement Learning from Human Feedback
13
作者 Liqing Wang Yiheng Xiao 《Intelligent Automation & Soft Computing》 2024年第4期619-631,共13页
Neural Machine Translation is one of the key research directions in Natural Language Processing.However,limited by the scale and quality of parallel corpus,the translation quality of low-resource Neural Machine Transl... Neural Machine Translation is one of the key research directions in Natural Language Processing.However,limited by the scale and quality of parallel corpus,the translation quality of low-resource Neural Machine Translation has always been unsatisfactory.When Reinforcement Learning from Human Feedback(RLHF)is applied to lowresource machine translation,commonly encountered issues of substandard preference data quality and the higher cost associated with manual feedback data.Therefore,a more cost-effective method for obtaining feedback data is proposed.At first,optimizing the quality of preference data through the prompt engineering of the Large Language Model(LLM),then combining human feedback to complete the evaluation.In this way,the reward model could acquire more semantic information and human preferences during the training phase,thereby enhancing feedback efficiency and the result’s quality.Experimental results demonstrate that compared with the traditional RLHF method,our method has been proven effective on multiple datasets and exhibits a notable improvement of 1.07 in BLUE.Meanwhile,it is also more favorably received in the assessments conducted by human evaluators and GPT-4o. 展开更多
关键词 Low-resource neural machine translation RLHF prompt engineering LLM
下载PDF
Transformer: A General Framework from Machine Translation to Others
14
作者 Yang Zhao Jiajun Zhang Chengqing Zong 《Machine Intelligence Research》 EI CSCD 2023年第4期514-538,共25页
Machine translation is an important and challenging task that aims at automatically translating natural language sentences from one language into another.Recently,Transformer-based neural machine translation(NMT)has a... Machine translation is an important and challenging task that aims at automatically translating natural language sentences from one language into another.Recently,Transformer-based neural machine translation(NMT)has achieved great break-throughs and has become a new mainstream method in both methodology and applications.In this article,we conduct an overview of Transformer-based NMT and its extension to other tasks.Specifically,we first introduce the framework of Transformer,discuss the main challenges in NMT and list the representative methods for each challenge.Then,the public resources and toolkits in NMT are listed.Meanwhile,the extensions of Transformer in other tasks,including the other natural language processing tasks,computer vision tasks,audio tasks and multi-modal tasks,are briefly presented.Finally,possible future research directions are suggested. 展开更多
关键词 neural machine translation TRANSFORMER document neural machine translation(NMT) multimodal NMT low-resource NMT
原文传递
Text Simplification Using Transformer and BERT 被引量:1
15
作者 Sarah Alissa Mike Wald 《Computers, Materials & Continua》 SCIE EI 2023年第5期3479-3495,共17页
Reading and writing are the main interaction methods with web content.Text simplification tools are helpful for people with cognitive impairments,new language learners,and children as they might find difficulties in u... Reading and writing are the main interaction methods with web content.Text simplification tools are helpful for people with cognitive impairments,new language learners,and children as they might find difficulties in understanding the complex web content.Text simplification is the process of changing complex text intomore readable and understandable text.The recent approaches to text simplification adopted the machine translation concept to learn simplification rules from a parallel corpus of complex and simple sentences.In this paper,we propose two models based on the transformer which is an encoder-decoder structure that achieves state-of-the-art(SOTA)results in machine translation.The training process for our model includes three steps:preprocessing the data using a subword tokenizer,training the model and optimizing it using the Adam optimizer,then using the model to decode the output.The first model uses the transformer only and the second model uses and integrates the Bidirectional Encoder Representations from Transformer(BERT)as encoder to enhance the training time and results.The performance of the proposed model using the transformerwas evaluated using the Bilingual Evaluation Understudy score(BLEU)and recorded(53.78)on the WikiSmall dataset.On the other hand,the experiment on the second model which is integrated with BERT shows that the validation loss decreased very fast compared with the model without the BERT.However,the BLEU score was small(44.54),which could be due to the size of the dataset so the model was overfitting and unable to generalize well.Therefore,in the future,the second model could involve experimenting with a larger dataset such as the WikiLarge.In addition,more analysis has been done on the model’s results and the used dataset using different evaluation metrics to understand their performance. 展开更多
关键词 Text simplification neural machine translation TRANSFORMER
下载PDF
Optimizing Non-Decomposable Evaluation Metrics for NeuralMachine Translation
16
作者 Shi-Qi Shen Yang Liu Mao-Song Sun 《Journal of Computer Science & Technology》 SCIE EI CSCD 2017年第4期796-804,共9页
While optimizing model parameters with respect to evaluation metrics has recently proven to benefit end to-end neural machine translation (NMT), the evaluation metrics used in the training are restricted to be defined... While optimizing model parameters with respect to evaluation metrics has recently proven to benefit end to-end neural machine translation (NMT), the evaluation metrics used in the training are restricted to be defined at the sentence level to facilitate online learning algorithms. This is undesirable because the final evaluation metrics used in the testing phase are usually non-decomposable (i.e., they are defined at the corpus level and cannot be expressed as the sum of sentence-level metrics). To minimize the discrepancy between the training and the testing, we propose to extend the minimum risk training (MRT) algorithm to take non-decomposable corpus-level evaluation metrics into consideration while still keeping the advantages of online training. This can be done by calculating corpus-level evaluation metrics on a subset of training data at each step in online training. Experiments on Chinese-English and English-French translation show that our approach improves the correlation between training and testing and significantly outperforms the MRT algorithm using decomposable evaluation metrics. 展开更多
关键词 neural machine translation training criterion non-decomposable evaluation metric
原文传递
DLBT:Deep Learning-Based Transformer to Generate Pseudo-Code from Source Code
17
作者 Walaa Gad Anas Alokla +2 位作者 Waleed Nazih Mustafa Aref Abdel-badeeh Salem 《Computers, Materials & Continua》 SCIE EI 2022年第2期3117-3132,共16页
Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax... Understanding the content of the source code and its regular expression is very difficult when they are written in an unfamiliar language.Pseudo-code explains and describes the content of the code without using syntax or programming language technologies.However,writing Pseudo-code to each code instruction is laborious.Recently,neural machine translation is used to generate textual descriptions for the source code.In this paper,a novel deep learning-based transformer(DLBT)model is proposed for automatic Pseudo-code generation from the source code.The proposed model uses deep learning which is based on Neural Machine Translation(NMT)to work as a language translator.The DLBT is based on the transformer which is an encoder-decoder structure.There are three major components:tokenizer and embeddings,transformer,and post-processing.Each code line is tokenized to dense vector.Then transformer captures the relatedness between the source code and the matching Pseudo-code without the need of Recurrent Neural Network(RNN).At the post-processing step,the generated Pseudo-code is optimized.The proposed model is assessed using a real Python dataset,which contains more than 18,800 lines of a source code written in Python.The experiments show promising performance results compared with other machine translation methods such as Recurrent Neural Network(RNN).The proposed DLBT records 47.32,68.49 accuracy and BLEU performance measures,respectively. 展开更多
关键词 Natural language processing long short-term memory neural machine translation pseudo-code generation deep learning-based transformer
下载PDF
An approach based on deep learning for Indian sign language translation
18
作者 Kinjal Bhargavkumar Mistree Devendra Thakor Brijesh Bhatt 《International Journal of Intelligent Computing and Cybernetics》 EI 2023年第3期397-419,共23页
Purpose–According to the Indian Sign Language Research and Training Centre(ISLRTC),India has approximately 300 certified human interpreters to help people with hearing loss.This paper aims to address the issue of Ind... Purpose–According to the Indian Sign Language Research and Training Centre(ISLRTC),India has approximately 300 certified human interpreters to help people with hearing loss.This paper aims to address the issue of Indian Sign Language(ISL)sentence recognition and translation into semantically equivalent English text in a signer-independent mode.Design/methodology/approach–This study presents an approach that translates ISL sentences into English text using the MobileNetV2 model and Neural Machine Translation(NMT).The authors have created an ISL corpus from the Brown corpus using ISL grammar rules to perform machine translation.The authors’approach converts ISL videos of the newly created dataset into ISL gloss sequences using the MobileNetV2 model and the recognized ISL gloss sequence is then fed to a machine translation module that generates an English sentence for each ISL sentence.Findings–As per the experimental results,pretrained MobileNetV2 model was proven the best-suited model for the recognition of ISL sentences and NMT provided better results than Statistical Machine Translation(SMT)to convert ISL text into English text.The automatic and human evaluation of the proposed approach yielded accuracies of 83.3 and 86.1%,respectively.Research limitations/implications–It can be seen that the neural machine translation systems produced translations with repetitions of other translated words,strange translations when the total number of words per sentence is increased and one or more unexpected terms that had no relation to the source text on occasion.The most common type of error is the mistranslation of places,numbers and dates.Although this has little effect on the overall structure of the translated sentence,it indicates that the embedding learned for these few words could be improved.Originality/value–Sign language recognition and translation is a crucial step toward improving communication between the deaf and the rest of society.Because of the shortage of human interpreters,an alternative approach is desired to help people achieve smooth communication with the Deaf.To motivate research in this field,the authors generated an ISL corpus of 13,720 sentences and a video dataset of 47,880 ISL videos.As there is no public dataset available for ISl videos incorporating signs released by ISLRTC,the authors created a new video dataset and ISL corpus. 展开更多
关键词 Indian sign language neural machine translation ISL corpus Pretrained models Sign language recognition Sign language translation Paper type Research paper
原文传递
Post-Editing Metaphorical Expressions:Productivity,Quality,and Strategies
19
作者 Yanfang Jia Si Lai 《Journal of Foreign Languages and Cultures》 2022年第2期28-43,共16页
This studyaims to explore the impact of neural machine translation(NMT)postediting on metaphorical expressions from English to Chinese in terms of productivity,translation quality,and the strategies employed.To this e... This studyaims to explore the impact of neural machine translation(NMT)postediting on metaphorical expressions from English to Chinese in terms of productivity,translation quality,and the strategies employed.To this end,a comparative study was carried out with 30 student translators who post-edited or translated a text rich in metaphors.By triangulating datafromkeystroke logging,retrospectiveprotocols,questionnaires,and translation quality evaluation,it was found that:(1)processing metaphorical expressions using NMT post-editing has significantly increased the translators'productivity compared to translating them from scratch;(2)NMT was perceived to be useful in processing metaphorical expressions and post-editing produced fewer errors in the final output than translation from scratch;(3)different strategies were used to process metaphorical expressions in post-editing and from-scratch translation due to the inherent differences in the two tasks,with "direct transfer"used most frequently in post-editing as translators usually rely on the NMT output to produce the final translation but more balanced strategies adopted in from-scratch translation as they need to seek for different solutions to rendering the metaphorical expressions;the quality of NMT output played a major role in what strategies were adopted to process the metaphorical expressions and their final product quality in post-editing,rather than the conventionality of the metaphorical expressions in the source text.Practical and research implications are discussed. 展开更多
关键词 neural machine translation post-editing metaphorical expressions PRODUCTIVITY translation quality translation strategies
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部