A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have ...A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.展开更多
Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically ...Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance.展开更多
Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries(LIBs)is pivotal for enhancing their operational efficiency and safety in diverse applications.Beyond operational advantages,precise RUL pre...Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries(LIBs)is pivotal for enhancing their operational efficiency and safety in diverse applications.Beyond operational advantages,precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies,thereby reducing cycle testing durations.Despite artificial neural networks(ANNs)showing promise in this domain,determining the best-fit architecture across varied datasets and optimization approaches remains challenging.This study introduces a machine learning framework for systematically evaluating multiple ANN architectures.Using only 30%of a training dataset derived from 124 LIBs subjected to various charging regimes,an extensive evaluation is conducted across 7 ANN architectures.Each architecture is optimized in terms of hyperparameters using this framework,a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU.By optimizing each model to its best configuration,a fair and standardized basis for comparing their RUL predictions is established.The research also examines the impact of different cycling windows on predictive accuracy.Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets.Significantly,using only the features derived from individual charge–discharge cycles,our top-performing model,based on data from just 40 cycles,achieves a mean absolute percentage error of 10.7%.展开更多
Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsi...Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.展开更多
Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To r...Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To resolve this issue,multi-scale-matching neural networks are proposed to solve the singular perturbation problems.Inspired by matched asymptotic expansions,the solution is decomposed into inner solutions for small scales and outer solutions for large scales,corresponding to boundary layers and outer regions,respectively.Moreover,to conform neural networks,we introduce exponential stretched variables in the boundary layers to avoid semiinfinite region problems.Numerical results for the thin plate problem validate the proposed method.展开更多
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov...Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.展开更多
The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat...The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness.展开更多
Customer churn poses a significant challenge for the banking and finance industry in the United States, directly affecting profitability and market share. This study conducts a comprehensive comparative analysis of ma...Customer churn poses a significant challenge for the banking and finance industry in the United States, directly affecting profitability and market share. This study conducts a comprehensive comparative analysis of machine learning models for customer churn prediction, focusing on the U.S. context. The research evaluates the performance of logistic regression, random forest, and neural networks using industry-specific datasets, considering the economic impact and practical implications of the findings. The exploratory data analysis reveals unique patterns and trends in the U.S. banking and finance industry, such as the age distribution of customers and the prevalence of dormant accounts. The study incorporates macroeconomic factors to capture the potential influence of external conditions on customer churn behavior. The findings highlight the importance of leveraging advanced machine learning techniques and comprehensive customer data to develop effective churn prevention strategies in the U.S. context. By accurately predicting customer churn, financial institutions can proactively identify at-risk customers, implement targeted retention strategies, and optimize resource allocation. The study discusses the limitations and potential future improvements, serving as a roadmap for researchers and practitioners to further advance the field of customer churn prediction in the evolving landscape of the U.S. banking and finance industry.展开更多
The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during the...The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.展开更多
In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machin...In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machine learning methodologies.The study employed a multilayer perceptron neural network to accurately predict the incidence of ICU-AW,focusing on critical variables such as ICU stay duration and mechanical ventilation.This research marks a significant advancement in applying machine learning to clinical diagnostics,offering a new paradigm for predictive medicine in critical care.It underscores the importance of integrating artificial intelligence technologies in clinical practice to enhance patient management strategies and calls for interdisciplinary collaboration to drive innovation in healthcare.展开更多
When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect pr...When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect prediction is elaborated through an innovative hybrid machine learning framework. The proposed technique combines an advanced deep neural network architecture with ensemble models such as Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The study evaluates the performance by considering multiple software projects like CM1, JM1, KC1, and PC1 using datasets from the PROMISE Software Engineering Repository. The three hybrid models that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, GaussianNB, Support Vector Classification (SVC), Neural Network), and the Hybrid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC AUC, and precision. The presented work offers valuable insights into the effectiveness of hybrid techniques for cross-project defect prediction, providing a comparative perspective on early defect identification and mitigation strategies. .展开更多
Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two archite...Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding.展开更多
In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent ...In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi...The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.展开更多
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit...Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.展开更多
This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-enc...This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-encoderconvolutional neural network(ACNN)trained to extract the features of turbine wakes using instantaneous datafrom large-eddy simulation(LES).The proposed framework is demonstrated by applying it to the Sandia NationalLaboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines.LES of this site is performedfor different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN.It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angleand wind speed that were not part of the training process.Specifically,the ACNN is shown to reproduce thewake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately.Compared to the brute-force LES,the ACNN developed herein is shown to reduce the overall computational costrequired to obtain the steady state first and second-order statistics of the wind farm by about 85%.展开更多
Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phis...Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning(ML)models—Artificial Neural Networks(ANN),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories.Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%.On the other hand,LSTM shows the lowest accuracy of 96%.These findings underscore the potential of ML techniques in enhancing phishing detection systems and bolstering cybersecurity measures against evolving phishing tactics,offering a promising avenue for safeguarding sensitive information and online security.展开更多
In a world where data is increasingly important for making breakthroughs,microelectronics is a field where data is sparse and hard to acquire.Only a few entities have the infrastructure that is required to automate th...In a world where data is increasingly important for making breakthroughs,microelectronics is a field where data is sparse and hard to acquire.Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices.This infrastructure is crucial for generating sufficient data for the use of new information technologies.This situation generates a cleavage between most of the researchers and the industry.To address this issue,this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing.The multi-I-V curves that we obtained were processed simultaneously using convolutional neural networks,which gave us the ability to predict a full set of device characteristics with a single inference.We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data.We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research,such as device engineering,yield engineering or process monitoring.Moreover,this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics,without the need for expensive experimentation infrastructure.展开更多
Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing,computational speed,and power efficiency.One landmark method is the diffractive deep neural network(D^(2) NN...Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing,computational speed,and power efficiency.One landmark method is the diffractive deep neural network(D^(2) NN)based on three-dimensional printing technology operated in the terahertz spectral range.Since the terahertz bandwidth involves limited interparticle coupling and material losses,this paper extends D^(2) NN to visible wavelengths.A general theory including a revised formula is proposed to solve any contradictions between wavelength,neuron size,and fabrication limitations.A novel visible light D^(2) NN classifier is used to recognize unchanged targets(handwritten digits ranging from 0 to 9)and targets that have been changed(i.e.,targets that have been covered or altered)at a visible wavelength of 632.8 nm.The obtained experimental classification accuracy(84%)and numerical classification accuracy(91.57%)quantify the match between the theoretical design and fabricated system performance.The presented framework can be used to apply a D^(2) NN to various practical applications and design other new applications.展开更多
文摘A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems(NIDSs).Consequently,network interruptions and loss of sensitive data have occurred,which led to an active research area for improving NIDS technologies.In an analysis of related works,it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction(FR)and Machine Learning(ML)techniques on NIDS datasets.However,these datasets are different in feature sets,attack types,and network design.Therefore,this paper aims to discover whether these techniques can be generalised across various datasets.Six ML models are utilised:a Deep Feed Forward(DFF),Convolutional Neural Network(CNN),Recurrent Neural Network(RNN),Decision Tree(DT),Logistic Regression(LR),and Naive Bayes(NB).The accuracy of three Feature Extraction(FE)algorithms is detected;Principal Component Analysis(PCA),Auto-encoder(AE),and Linear Discriminant Analysis(LDA),are evaluated using three benchmark datasets:UNSW-NB15,ToN-IoT and CSE-CIC-IDS2018.Although PCA and AE algorithms have been widely used,the determination of their optimal number of extracted dimensions has been overlooked.The results indicate that no clear FE method or ML model can achieve the best scores for all datasets.The optimal number of extracted dimensions has been identified for each dataset,and LDA degrades the performance of the ML models on two datasets.The variance is used to analyse the extracted dimensions of LDA and PCA.Finally,this paper concludes that the choice of datasets significantly alters the performance of the applied techniques.We believe that a universal(benchmark)feature set is needed to facilitate further advancement and progress of research in this field.
文摘Long-term time series forecasting stands as a crucial research domain within the realm of automated machine learning(AutoML).At present,forecasting,whether rooted in machine learning or statistical learning,typically relies on expert input and necessitates substantial manual involvement.This manual effort spans model development,feature engineering,hyper-parameter tuning,and the intricate construction of time series models.The complexity of these tasks renders complete automation unfeasible,as they inherently demand human intervention at multiple junctures.To surmount these challenges,this article proposes leveraging Long Short-Term Memory,which is the variant of Recurrent Neural Networks,harnessing memory cells and gating mechanisms to facilitate long-term time series prediction.However,forecasting accuracy by particular neural network and traditional models can degrade significantly,when addressing long-term time-series tasks.Therefore,our research demonstrates that this innovative approach outperforms the traditional Autoregressive Integrated Moving Average(ARIMA)method in forecasting long-term univariate time series.ARIMA is a high-quality and competitive model in time series prediction,and yet it requires significant preprocessing efforts.Using multiple accuracy metrics,we have evaluated both ARIMA and proposed method on the simulated time-series data and real data in both short and long term.Furthermore,our findings indicate its superiority over alternative network architectures,including Fully Connected Neural Networks,Convolutional Neural Networks,and Nonpooling Convolutional Neural Networks.Our AutoML approach enables non-professional to attain highly accurate and effective time series forecasting,and can be widely applied to various domains,particularly in business and finance.
基金supported by First Automotive Work Group Research Institute and Jilin Province,China,under the key scientific and technological program grant number 20210301027GX.
文摘Accurate prediction of the remaining useful life(RUL)of lithium-ion batteries(LIBs)is pivotal for enhancing their operational efficiency and safety in diverse applications.Beyond operational advantages,precise RUL predictions can also expedite advancements in cell design and fast-charging methodologies,thereby reducing cycle testing durations.Despite artificial neural networks(ANNs)showing promise in this domain,determining the best-fit architecture across varied datasets and optimization approaches remains challenging.This study introduces a machine learning framework for systematically evaluating multiple ANN architectures.Using only 30%of a training dataset derived from 124 LIBs subjected to various charging regimes,an extensive evaluation is conducted across 7 ANN architectures.Each architecture is optimized in terms of hyperparameters using this framework,a process that spans 145 days on an NVIDIA GeForce RTX 4090 GPU.By optimizing each model to its best configuration,a fair and standardized basis for comparing their RUL predictions is established.The research also examines the impact of different cycling windows on predictive accuracy.Using a stratified partitioning technique underscores the significance of consistent dataset representation across subsets.Significantly,using only the features derived from individual charge–discharge cycles,our top-performing model,based on data from just 40 cycles,achieves a mean absolute percentage error of 10.7%.
基金the National Natural Science Foundation of China(No.52274048)Beijing Natural Science Foundation(No.3222037)+1 种基金the CNPC 14th Five-Year Perspective Fundamental Research Project(No.2021DJ2104)the Science Foundation of China University of Petroleum,Beijing(No.2462021YXZZ010).
文摘Recent advances in deep neural networks have shed new light on physics,engineering,and scientific computing.Reconciling the data-centered viewpoint with physical simulation is one of the research hotspots.The physicsinformedneural network(PINN)is currently the most general framework,which is more popular due to theconvenience of constructing NNs and excellent generalization ability.The automatic differentiation(AD)-basedPINN model is suitable for the homogeneous scientific problem;however,it is unclear how AD can enforce fluxcontinuity across boundaries between cells of different properties where spatial heterogeneity is represented bygrid cells with different physical properties.In this work,we propose a criss-cross physics-informed convolutionalneural network(CC-PINN)learning architecture,aiming to learn the solution of parametric PDEs with spatialheterogeneity of physical properties.To achieve the seamless enforcement of flux continuity and integration ofphysicalmeaning into CNN,a predefined 2D convolutional layer is proposed to accurately express transmissibilitybetween adjacent cells.The efficacy of the proposedmethodwas evaluated through predictions of several petroleumreservoir problems with spatial heterogeneity and compared against state-of-the-art(PINN)through numericalanalysis as a benchmark,which demonstrated the superiority of the proposed method over the PINN.
基金supported by the National Natural Science Foun-dation of China (NSFC) Basic Science Center Program for"Multiscale Problems in Nonlinear Mechanics"(Grant No. 11988102)supported by the National Natural Science Foundation of China (NSFC)(Grant No. 12202451)
文摘Physics-informed neural networks are a useful machine learning method for solving differential equations,but encounter challenges in effectively learning thin boundary layers within singular perturbation problems.To resolve this issue,multi-scale-matching neural networks are proposed to solve the singular perturbation problems.Inspired by matched asymptotic expansions,the solution is decomposed into inner solutions for small scales and outer solutions for large scales,corresponding to boundary layers and outer regions,respectively.Moreover,to conform neural networks,we introduce exponential stretched variables in the boundary layers to avoid semiinfinite region problems.Numerical results for the thin plate problem validate the proposed method.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)and the Soonchunhyang University Research Fund.
文摘Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.
文摘The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness.
文摘Customer churn poses a significant challenge for the banking and finance industry in the United States, directly affecting profitability and market share. This study conducts a comprehensive comparative analysis of machine learning models for customer churn prediction, focusing on the U.S. context. The research evaluates the performance of logistic regression, random forest, and neural networks using industry-specific datasets, considering the economic impact and practical implications of the findings. The exploratory data analysis reveals unique patterns and trends in the U.S. banking and finance industry, such as the age distribution of customers and the prevalence of dormant accounts. The study incorporates macroeconomic factors to capture the potential influence of external conditions on customer churn behavior. The findings highlight the importance of leveraging advanced machine learning techniques and comprehensive customer data to develop effective churn prevention strategies in the U.S. context. By accurately predicting customer churn, financial institutions can proactively identify at-risk customers, implement targeted retention strategies, and optimize resource allocation. The study discusses the limitations and potential future improvements, serving as a roadmap for researchers and practitioners to further advance the field of customer churn prediction in the evolving landscape of the U.S. banking and finance industry.
文摘The advent of pandemics such as COVID-19 significantly impacts human behaviour and lives every day.Therefore,it is essential to make medical services connected to internet,available in every remote location during these situations.Also,the security issues in the Internet of Medical Things(IoMT)used in these service,make the situation even more critical because cyberattacks on the medical devices might cause treatment delays or clinical failures.Hence,services in the healthcare ecosystem need rapid,uninterrupted,and secure facilities.The solution provided in this research addresses security concerns and services availability for patients with critical health in remote areas.This research aims to develop an intelligent Software Defined Networks(SDNs)enabled secure framework for IoT healthcare ecosystem.We propose a hybrid of machine learning and deep learning techniques(DNN+SVM)to identify network intrusions in the sensor-based healthcare data.In addition,this system can efficiently monitor connected devices and suspicious behaviours.Finally,we evaluate the performance of our proposed framework using various performance metrics based on the healthcare application scenarios.the experimental results show that the proposed approach effectively detects and mitigates attacks in the SDN-enabled IoT networks and performs better that other state-of-art-approaches.
文摘In the research published in the World Journal of Clinical Cases,Wang and Long conducted a quantitative analysis to delineate the risk factors for intensive care unit-acquired weakness(ICU-AW)utilizing advanced machine learning methodologies.The study employed a multilayer perceptron neural network to accurately predict the incidence of ICU-AW,focusing on critical variables such as ICU stay duration and mechanical ventilation.This research marks a significant advancement in applying machine learning to clinical diagnostics,offering a new paradigm for predictive medicine in critical care.It underscores the importance of integrating artificial intelligence technologies in clinical practice to enhance patient management strategies and calls for interdisciplinary collaboration to drive innovation in healthcare.
文摘When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect prediction is elaborated through an innovative hybrid machine learning framework. The proposed technique combines an advanced deep neural network architecture with ensemble models such as Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The study evaluates the performance by considering multiple software projects like CM1, JM1, KC1, and PC1 using datasets from the PROMISE Software Engineering Repository. The three hybrid models that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, GaussianNB, Support Vector Classification (SVC), Neural Network), and the Hybrid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC AUC, and precision. The presented work offers valuable insights into the effectiveness of hybrid techniques for cross-project defect prediction, providing a comparative perspective on early defect identification and mitigation strategies. .
基金conducted by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT。
文摘Flood probability maps are essential for a range of applications,including land use planning and developing mitigation strategies and early warning systems.This study describes the potential application of two architectures of deep learning neural networks,namely convolutional neural networks(CNN)and recurrent neural networks(RNN),for spatially explicit prediction and mapping of flash flood probability.To develop and validate the predictive models,a geospatial database that contained records for the historical flood events and geo-environmental characteristics of the Golestan Province in northern Iran was constructed.The step-wise weight assessment ratio analysis(SWARA)was employed to investigate the spatial interplay between floods and different influencing factors.The CNN and RNN models were trained using the SWARA weights and validated using the receiver operating characteristics technique.The results showed that the CNN model(AUC=0.832,RMSE=0.144)performed slightly better than the RNN model(AUC=0.814,RMSE=0.181)in predicting future floods.Further,these models demonstrated an improved prediction of floods compared to previous studies that used different models in the same study area.This study showed that the spatially explicit deep learning neural network models are successful in capturing the heterogeneity of spatial patterns of flood probability in the Golestan Province,and the resulting probability maps can be used for the development of mitigation plans in response to the future floods.The general policy implication of our study suggests that design,implementation,and verification of flood early warning systems should be directed to approximately 40%of the land area characterized by high and very susceptibility to flooding.
基金supported by International Science and Technology Cooperation project (Grant No. 2008DFA71750)
文摘In metal cutting industry it is a common practice to search for optimal combination of cutting parameters in order to maximize the tool life for a fixed minimum value of material removal rate(MRR). After the advent of high-speed milling(HSM) pro cess, lots of experimental and theoretical researches have been done for this purpose which mainly emphasized on the optimization of the cutting parameters. It is highly beneficial to convert raw data into a comprehensive knowledge-based expert system using fuzzy logic as the reasoning mechanism. In this paper an attempt has been presented for the extraction of the rules from fuzzy neural network(FNN) so as to have the most effective knowledge-base for given set of data. Experiments were conducted to determine the best values of cutting speeds that can maximize tool life for different combinations of input parameters. A fuzzy neural network was constructed based on the fuzzification of input parameters and the cutting speed. After training process, raw rule sets were extracted and a rule pruning approach was proposed to obtain concise linguistic rules. The estimation process with fuzzy inference showed that the optimized combination of fuzzy rules provided the estimation error of only 6.34 m/min as compared to 314 m/min of that of randomized combination of rule s.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
文摘The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019.
基金supported by the National Natural Science Foundation of China grants 61836014 to CL,and the STI2030‐Major Projects(2022ZD0205100)the Strategic Priority Research Program of Chinese Academy of Science,Grant No.XDB32010300+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX05)the Innovation Academy of Artificial Intelligence,Chinese Academy of Sciences to ZW.
文摘Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.
基金supported by the National Offshore Wind Research and Development Consortium (NOWRDC) under agreement number 147503a grant from the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Water Power Technologies Office (WPTO) Award Number DE-EE0009450
文摘This study proposes a cost-effective machine-learning based model for predicting velocity and turbulence kineticenergy fields in the wake of wind turbines for yaw control applications.The model consists of an auto-encoderconvolutional neural network(ACNN)trained to extract the features of turbine wakes using instantaneous datafrom large-eddy simulation(LES).The proposed framework is demonstrated by applying it to the Sandia NationalLaboratory Scaled Wind Farm Technology facility consisting of three 225 kW turbines.LES of this site is performedfor different wind speeds and yaw angles to generate datasets for training and validating the proposed ACNN.It is shown that the ACNN accurately predicts turbine wake characteristics for cases with turbine yaw angleand wind speed that were not part of the training process.Specifically,the ACNN is shown to reproduce thewake redirection of the upstream turbine and the secondary wake steering of the downstream turbine accurately.Compared to the brute-force LES,the ACNN developed herein is shown to reduce the overall computational costrequired to obtain the steady state first and second-order statistics of the wind farm by about 85%.
文摘Phishing attacks pose a significant security threat by masquerading as trustworthy entities to steal sensitive information,a problem that persists despite user awareness.This study addresses the pressing issue of phishing attacks on websites and assesses the performance of three prominent Machine Learning(ML)models—Artificial Neural Networks(ANN),Convolutional Neural Networks(CNN),and Long Short-Term Memory(LSTM)—utilizing authentic datasets sourced from Kaggle and Mendeley repositories.Extensive experimentation and analysis reveal that the CNN model achieves a better accuracy of 98%.On the other hand,LSTM shows the lowest accuracy of 96%.These findings underscore the potential of ML techniques in enhancing phishing detection systems and bolstering cybersecurity measures against evolving phishing tactics,offering a promising avenue for safeguarding sensitive information and online security.
文摘In a world where data is increasingly important for making breakthroughs,microelectronics is a field where data is sparse and hard to acquire.Only a few entities have the infrastructure that is required to automate the fabrication and testing of semiconductor devices.This infrastructure is crucial for generating sufficient data for the use of new information technologies.This situation generates a cleavage between most of the researchers and the industry.To address this issue,this paper will introduce a widely applicable approach for creating custom datasets using simulation tools and parallel computing.The multi-I-V curves that we obtained were processed simultaneously using convolutional neural networks,which gave us the ability to predict a full set of device characteristics with a single inference.We prove the potential of this approach through two concrete examples of useful deep learning models that were trained using the generated data.We believe that this work can act as a bridge between the state-of-the-art of data-driven methods and more classical semiconductor research,such as device engineering,yield engineering or process monitoring.Moreover,this research gives the opportunity to anybody to start experimenting with deep neural networks and machine learning in the field of microelectronics,without the need for expensive experimentation infrastructure.
基金This research was supported in part by National Natural Science Foundation of China(61675056 and 61875048).
文摘Optical deep learning based on diffractive optical elements offers unique advantages for parallel processing,computational speed,and power efficiency.One landmark method is the diffractive deep neural network(D^(2) NN)based on three-dimensional printing technology operated in the terahertz spectral range.Since the terahertz bandwidth involves limited interparticle coupling and material losses,this paper extends D^(2) NN to visible wavelengths.A general theory including a revised formula is proposed to solve any contradictions between wavelength,neuron size,and fabrication limitations.A novel visible light D^(2) NN classifier is used to recognize unchanged targets(handwritten digits ranging from 0 to 9)and targets that have been changed(i.e.,targets that have been covered or altered)at a visible wavelength of 632.8 nm.The obtained experimental classification accuracy(84%)and numerical classification accuracy(91.57%)quantify the match between the theoretical design and fabricated system performance.The presented framework can be used to apply a D^(2) NN to various practical applications and design other new applications.