In vito fber photometry is a powerful technique to analyze the dy namics of population neurons during fiunctional study of neuroscience.Here,we introduced a detailed protocol for fiber photometry-based calciun reordin...In vito fber photometry is a powerful technique to analyze the dy namics of population neurons during fiunctional study of neuroscience.Here,we introduced a detailed protocol for fiber photometry-based calciun reording in freely moving mice,covering from virus injection,fiber stub insertion,optogenetical stimulation to data procurement and analysis.Furthemnore,we applied this protocol to explore neuronal activity of mice latenal-posterior(LP)thalaric nucleus in response to optogenetical stimulation of primary visual cortex(V1)neurons,and explore axon clusters activity of optogenetically evoked V1 neurons.Final confirmation of virus-based protein expression in V1 and precise fber insertion indicated that the surgery procedure of this protocol is reliable for functional calcium recording.The scripts for data analysis and some tips in our protocol are provided in details.Together,this protocol is simple,low-cost,and effective for neuronal activity detection by fiber photometry,which will hep neuroscience researchers to carry out fiunctional and behavioral study in vivo.展开更多
Summary: Adult-bom neurons undergo a transient period of plasticity during their integration into the neural circuit. This transient plasticity may involve NMDA receptors containing NR2B, the major sub unit expressed...Summary: Adult-bom neurons undergo a transient period of plasticity during their integration into the neural circuit. This transient plasticity may involve NMDA receptors containing NR2B, the major sub unit expressed at early developmental stages. The main objective of the present study was to investigate the effects of NR2B gene knockdown on the functional integration of the adult-born granule cells gen- erated from the subgranule zone (SGZ) in the hippocampus. The small interfering RNA (siRNA) was used to knock down the NR2B gene in the adult-born hippocampal neurons. In the functional integration test, the mice were exposed to a novel environment (open field arena), and the expression of c-fos was immunohistochemically detected in the hippocampus. After exposure to the novel environment, siRNA-NR2B mice were significantly different from control mice in either the number of squares or the number of rears they crossed, showing decreased horizontal and vertical activity (P〈0.05). Moreover, the c-fos expression was increased in both control and siRNA-NR2B mice after open field test. But, it was significantly lower in siRNA-NR2B neurons than in control neurons. It was concluded that the neu- ral activity of newborn neurons is regulated by their own NR2B-containing NMDA glutamate receptors during a short, critical period after neuronal birth.展开更多
As the intrinsic driving force to promote learner’s learning,learning motivation is one of the key factors that affect learning engagement and efficiency.In terms of optimizing instructional videos and strengthening ...As the intrinsic driving force to promote learner’s learning,learning motivation is one of the key factors that affect learning engagement and efficiency.In terms of optimizing instructional videos and strengthening learning effects,it is particularly important to understand the cognitive neural mechanism and influencing factors of the changes of learning motivation.By using the near-infrared spectrometer technology,the paper has collected the state of neural activity while learners were learning different instructional videos,and has analyzed the relationship between the learning motivation of instructional videos and the state of neural activity in the learning process from the angle of cognitive neuroscience.It is found that both the intrinsic and extrinsic learning motivation of instructional videos will affect the state of neural activity in the learning process;the learning process will also affect the intensity of learning motivation,while the preparation of fine instructional videos will also cause the transfer of learning motivation.展开更多
Human central nerve system(CNS)is an extremely complex and delicate structure.While regeneration is possible in some reptiles and fish CNS,the regeneration capacity seems completely lost in adult mammals.Therefore,the...Human central nerve system(CNS)is an extremely complex and delicate structure.While regeneration is possible in some reptiles and fish CNS,the regeneration capacity seems completely lost in adult mammals.Therefore,the classic concept is that once neurons in mammal展开更多
A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabili...A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabilitation and the development robot hand designs. In the present study, 11 healthy volunteers performed a different target force-tracking task, which involved the index finger alone, index and middle finger together, and the combination of four fingers (i.e., index, middle, ring, and little). The target force trace corresponded to 3 levels of 20% maximal voluntary changes (MVC), 30% MVC, and 40% MVC in 20 seconds. In the test, an unexpected single 120% motor threshold transcranial magnetic stimulation was applied to the primary motor cortex (M1) during force tracking. Results revealed that peak force changes increased with increasing background force and the number of involved task fingers. These results demonstrate that M1 neural activities correlate with finger-force production, and M1 plays a role in finger-force control. Moreover, different neuronal networks were required for different finger patterns; a complicated task required multi-finger combinations and a complicated neuronal network comprised a large number of neurons.展开更多
Clathrin-mediated endocytosis has been implicated in various physiological processes,including nutrient uptake,signal transduction,synaptic vesicle recycling,maintenance of cell polarity,and antigen presentation.Despi...Clathrin-mediated endocytosis has been implicated in various physiological processes,including nutrient uptake,signal transduction,synaptic vesicle recycling,maintenance of cell polarity,and antigen presentation.Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis,the physiological function of α-and γ-adaptin binding protein(aagab)remains elusive.In this study,we investigate the biological function of aagab during zebrafish development.We establish a loss-of-function mutant of aagab in zebrafish,revealing impaired swimming and early larval mortality.Given the high expression level of aagab in the brain,we probe into its physiological role in the nervous system.aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons,aligning with reduced neurotransmitter release(e.g.,norepinephrine)in the tectal neuropil of aagab mutants.Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release,calcium responses,swimming ability,and survival.Furthermore,our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells,pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling.In conclusion,our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.展开更多
Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineerin...Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineering. Here we review the design and application of genetically encoded indicators for calcium ions, membrane potential and neurotransmitters. We also summarize common strategies for the design and optimization of genetically encoded neural activity indicators.展开更多
Brain activity is highly structured within local microcircuits and brain-wide networks,involving exquisite coordination across multiple brain regions in both superficial and deep structures^([1]).To understand how bra...Brain activity is highly structured within local microcircuits and brain-wide networks,involving exquisite coordination across multiple brain regions in both superficial and deep structures^([1]).To understand how brain represents,transforms and communicates in-展开更多
Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities ...Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied.展开更多
Currently hemodynamic-based functional MRI technique is of limitation in temporal resolution. As neural activities in the brain accompany with current induced neuronal magnetic fields (NMF), it is possible to utiliz...Currently hemodynamic-based functional MRI technique is of limitation in temporal resolution. As neural activities in the brain accompany with current induced neuronal magnetic fields (NMF), it is possible to utilize MRI to detect NMF directly thus to improve the temporal resolution. In this work, the contribution of dendrite branch to NMF is investigated by numeric simulation. The results indicate that the existence of dendrite branch may enhance the detectability of NMF by MRI directly.展开更多
Using a near-infrared(NIR)light flood-illumination imager equipped with a high-speed(120 Hz)CCD camera,we demonstrated optical imaging of stimulus-evoked retinal activity in isolated,but intact,frog eye.Both fast and ...Using a near-infrared(NIR)light flood-illumination imager equipped with a high-speed(120 Hz)CCD camera,we demonstrated optical imaging of stimulus-evoked retinal activity in isolated,but intact,frog eye.Both fast and slow transient intrinsic optical signals(IOSs)were observed.Fast optical response occurred immediately after the stimulus onset,could reach peak magnitude within 100 ms,and correlated tightly with ON and OFF edges of the visible light stimulus;while slow optical response lasted a relatively long time(many seconds).High-resolution images revealed both positive(increasing)and negative(decreasing)IOSs,and dynamic optical change at individual CCD pixels could often exceed 10%of the background light intensity.Our experiment on isolated eye suggests that further development of fast,high(sub-cellular)resolution fundus imager will allow robust detection of fast IOSs in vivo,and thus allow noninvasive,three-dimensional evaluation of retinal neural function.展开更多
This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(T...This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(Tungsten,50 μm,32 channels)implanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor inference,a decoding method is developed based on the ML estimation.The results show that the average decoding accuracy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This work has profound implications for a novel brain-machine interface system for odor inference.展开更多
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach...An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.展开更多
The ability to predict the future behavior of solar activity has become extremely import due to its effect on the environment near the Earth. Predictions of both the amplitude and timing of the next solar cycle will a...The ability to predict the future behavior of solar activity has become extremely import due to its effect on the environment near the Earth. Predictions of both the amplitude and timing of the next solar cycle will assist in estimating the various consequences of space weather. The level of solar activity is usually expressed by in- ternational sunspot number (Rz). Several prediction techniques have been applied and have achieved varying degrees of success in the domain of solar activity prediction. We predict a solar index (Rz) in solar cycle 24 by using a neural network method. The neural network technique is used to analyze the time series of solar activity. According to our predictions of yearly sunspot number, the maximum of cycle 24 will occur in the year 2013 and will have an annual mean sunspot number of 65. Finally, we discuss our results in order to compare them with other suggested predictions.展开更多
BACKGROUND: The interpretation of non-verbal social signals relies heavily on the ability to perceive biological motion. The posterior superior temporal sulcus is an important part of a network involved in biological...BACKGROUND: The interpretation of non-verbal social signals relies heavily on the ability to perceive biological motion. The posterior superior temporal sulcus is an important part of a network involved in biological motion processing. However, the underlying functional organization remains poorly understood. Several studies have suggested topographical representation of motion from different body parts within this region. However, other studies have shown that the posterior superior temporal sulcus responds equally to any body part. OBJECTIVE: Through the use of functional magnetic resonance imaging, the effects of socially relevant biological motion stimuli to activate a specific cortical area within posterior superior temporal sulcus, even if different body parts are involved in motion, will be analyzed. DESIGN, TIME AND SETTING: A functional magnetic resonance imaging, block-design was performed at the Magnetic Resonance Imaging, Surgical Medical Investigation Center, Havana, Cuba between 2004 and 2005. PARTICIPANTS: Thirteen healthy volunteers, from 19 to 55 years of age and compris!ng eight males and five females, were included in the study. METHODS: A conjunction analysis of responses to natural, dynamic, fearful, facial expressions and point-light, body-motion animations. MAIN OUTCOME MEASURES: The corresponding functionally specialized areas, as well as neural areas significant for both types of stimuli, were identified. RESULTS: One region within the posterior superior temporal sulcus of the right hemisphere was equally activated by facial and body complex motion. CONCLUSION: A site of common neural activity existed within the posterior superior temporal sulcus, which was not specific to a biological motion type. In addition, the activity was not related to a topographically organized body-part map, which suggested high-level visual representation of biological motion in this region.展开更多
Analyzing the structure and function of the brain's neural network is critical for identifying the working principles of the brain and the mechanisms of brain diseases.Recombinant rabies viral vectors allow for th...Analyzing the structure and function of the brain's neural network is critical for identifying the working principles of the brain and the mechanisms of brain diseases.Recombinant rabies viral vectors allow for the retrograde labeling of projection neurons and cell type-specific trans-monosynaptic tracing,making these vectors powerful candidates for the dissection of synaptic inputs.Although several attenuated rabies viral vectors have been developed,their application in studies of functional networks is hindered by the long preparation cycle and low yield of these vectors.To overcome these limitations,we developed an improved production system for the rapid rescue and preparation of a high-titer CVS-N2c-ΔG virus.Our results showed that the new CVS-N2c-ΔG-based toolkit performed remarkably:(1)N2cG-coated CVS-N2c-ΔG allowed for efficient retrograde access to projection neurons that were unaddressed by rAAV9-Retro,and the efficiency was six times higher than that of rAAV9-Retro;(2)the trans-monosynaptic efficiency of oG-mediated CVS-N2c-ΔG was 2–3 times higher than that of oG-mediated SAD-B19-ΔG;(3)CVS-N2c-ΔG could delivery modified genes for neural activity monitoring,and the time window during which this was maintained was 3 weeks;and(4)CVS-N2c-ΔG could express sufficient recombinases for efficient transgene recombination.These findings demonstrate that new CVS-N2c-ΔG-based toolkit may serve as a versatile tool for structural and functional studies of neural circuits.展开更多
The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiat...The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards h PXR. Heuristic method(HM)-Best Subset Modeling(BSM) and HM-Polynomial Neural Networks(PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain(AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved(for HM-BSM, r^2=0.881, q^2_(LOO)=0.797, q^2_(EXT)=0.674; for HM-PNN, r^2=0.882, q^2_(LOO)=0.856, q^2_(EXT)=0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to h PXR.展开更多
A long-standing goal of spinal cord injury research is to develop effective repair strategies,which can restore motor and sensory functions to near-normal levels.Recent advances in clinical management of spinal cord i...A long-standing goal of spinal cord injury research is to develop effective repair strategies,which can restore motor and sensory functions to near-normal levels.Recent advances in clinical management of spinal cord injury have significantly improved the prognosis,survival rate and quality of life in patients with spinal cord injury.In addition,a significant progress in basic science research has unraveled the underlying cellular and molecular events of spinal cord injury.Such efforts enabled the development of pharmacologic agents,biomaterials and stem-cell based therapy.Despite these efforts,there is still no standard care to regenerate axons or restore function of silent axons in the injured spinal cord.These challenges led to an increased focus on another therapeutic approach,namely neuromodulation.In multiple animal models of spinal cord injury,epidural electrical stimulation of the spinal cord has demonstrated a recovery of motor function.Emerging evidence regarding the efficacy of epidural electrical stimulation has further expanded the potential of epidural electrical stimulation for treating patients with spinal cord injury.However,most clinical studies were conducted on a very small number of patients with a wide range of spinal cord injury.Thus,subsequent studies are essential to evaluate the therapeutic potential of epidural electrical stimulation for spinal cord injury and to optimize stimulation parameters.Here,we discuss cellular and molecular events that continue to damage the injured spinal cord and impede neurological recovery following spinal cord injury.We also discuss and summarize the animal and human studies that evaluated epidural electrical stimulation in spinal cord injury.展开更多
Our lab has shown that brief electrical nerve stimulation(ES)has a dramatic impact on remyelination of lysophosphatidyl choline(LPC)-induced focally demyelinated rat peripheral nerves,while also inducing an axon-prote...Our lab has shown that brief electrical nerve stimulation(ES)has a dramatic impact on remyelination of lysophosphatidyl choline(LPC)-induced focally demyelinated rat peripheral nerves,while also inducing an axon-protective phenotype and shifting macrophages from a predominantly pro-inflammatory toward a pro-repair phenotype.Whether this same potential exists in the central nervous system is not known.Thus,for proof of principle studies,the peripheral nerve demyelination and ES model was adapted to the central nervous system,whereby a unilateral focal LPC-induced demyelination of the dorsal column at the lumbar enlargement where the sciatic nerve afferents enter was created,so that subsequent ipsilateral sciatic nerve ES results in increased neural activity in the demyelinated axons.Data reveal a robust focal demyelination at 7 days post-LPC injection.Delivery of 1-hour ES at 7 days post-LPC polarizes macrophages/microglia toward a pro-repair phenotype when examined at 14 days post-LPC;results in smaller LPC-associated regions of inflammation compared to non-stimulated controls;results in significantly more cells of the oligodendroglial lineage in the demyelinated region;elevates myelin basic protein levels;and shifts the paranodal protein Caspr along demyelinated axons to a more restricted distribution,consistent with reformation of the paranodes of the nodes of Ranvier.ES also significantly enhanced levels of phosphorylated neurofilaments detected in the zones of demyelination,which has been shown to confer axon protection.Collectively these findings support that strategies that increase neural activity,such as brief electrical stimulation,can be beneficial for promoting intrinsic repair following focal demyelinating insults in demyelinating diseases such as multiple sclerosis.All animal procedures performed were approved by the University of Saskatchewan's Animal Research Ethics Board(protocol#20090087;last approval date:November 5,2020).展开更多
Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstru...Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.31371106 and 91632110)HZAU Independent Innovation Fund (2014BQ019).
文摘In vito fber photometry is a powerful technique to analyze the dy namics of population neurons during fiunctional study of neuroscience.Here,we introduced a detailed protocol for fiber photometry-based calciun reording in freely moving mice,covering from virus injection,fiber stub insertion,optogenetical stimulation to data procurement and analysis.Furthemnore,we applied this protocol to explore neuronal activity of mice latenal-posterior(LP)thalaric nucleus in response to optogenetical stimulation of primary visual cortex(V1)neurons,and explore axon clusters activity of optogenetically evoked V1 neurons.Final confirmation of virus-based protein expression in V1 and precise fber insertion indicated that the surgery procedure of this protocol is reliable for functional calcium recording.The scripts for data analysis and some tips in our protocol are provided in details.Together,this protocol is simple,low-cost,and effective for neuronal activity detection by fiber photometry,which will hep neuroscience researchers to carry out fiunctional and behavioral study in vivo.
基金supported by the National Natural Science Foundation of China(No.81000537)
文摘Summary: Adult-bom neurons undergo a transient period of plasticity during their integration into the neural circuit. This transient plasticity may involve NMDA receptors containing NR2B, the major sub unit expressed at early developmental stages. The main objective of the present study was to investigate the effects of NR2B gene knockdown on the functional integration of the adult-born granule cells gen- erated from the subgranule zone (SGZ) in the hippocampus. The small interfering RNA (siRNA) was used to knock down the NR2B gene in the adult-born hippocampal neurons. In the functional integration test, the mice were exposed to a novel environment (open field arena), and the expression of c-fos was immunohistochemically detected in the hippocampus. After exposure to the novel environment, siRNA-NR2B mice were significantly different from control mice in either the number of squares or the number of rears they crossed, showing decreased horizontal and vertical activity (P〈0.05). Moreover, the c-fos expression was increased in both control and siRNA-NR2B mice after open field test. But, it was significantly lower in siRNA-NR2B neurons than in control neurons. It was concluded that the neu- ral activity of newborn neurons is regulated by their own NR2B-containing NMDA glutamate receptors during a short, critical period after neuronal birth.
基金Key project of education science planning of Shenzhen in 2019:Research on Fatigue State of Online Learning Based on Cognitive Neuroscience(project number:zzdx19005)Co construction planning project of philosophy and social sciences in Guangdong Province in 2018:Research on the Relationship Between Learning Experience and Learning Motivation of Online Courses(project number:GD18XJY39)Teaching quality and teaching reform project of higher vocational education in Guangdong Province in 2018:Research on the Construction and Application of Higher Vocational Education Informatization Course Based on Task Driven Mode(project number:GDJG201941).
文摘As the intrinsic driving force to promote learner’s learning,learning motivation is one of the key factors that affect learning engagement and efficiency.In terms of optimizing instructional videos and strengthening learning effects,it is particularly important to understand the cognitive neural mechanism and influencing factors of the changes of learning motivation.By using the near-infrared spectrometer technology,the paper has collected the state of neural activity while learners were learning different instructional videos,and has analyzed the relationship between the learning motivation of instructional videos and the state of neural activity in the learning process from the angle of cognitive neuroscience.It is found that both the intrinsic and extrinsic learning motivation of instructional videos will affect the state of neural activity in the learning process;the learning process will also affect the intensity of learning motivation,while the preparation of fine instructional videos will also cause the transfer of learning motivation.
文摘Human central nerve system(CNS)is an extremely complex and delicate structure.While regeneration is possible in some reptiles and fish CNS,the regeneration capacity seems completely lost in adult mammals.Therefore,the classic concept is that once neurons in mammal
基金the Fundamental Research Funds for the Central Universities,No.CDJZR11230002
文摘A better understanding of the neural mechanisms of finger-force regulation can help to explain the relationship between the central nervous system and nerve-muscle force, as well as assist in motor functional rehabilitation and the development robot hand designs. In the present study, 11 healthy volunteers performed a different target force-tracking task, which involved the index finger alone, index and middle finger together, and the combination of four fingers (i.e., index, middle, ring, and little). The target force trace corresponded to 3 levels of 20% maximal voluntary changes (MVC), 30% MVC, and 40% MVC in 20 seconds. In the test, an unexpected single 120% motor threshold transcranial magnetic stimulation was applied to the primary motor cortex (M1) during force tracking. Results revealed that peak force changes increased with increasing background force and the number of involved task fingers. These results demonstrate that M1 neural activities correlate with finger-force production, and M1 plays a role in finger-force control. Moreover, different neuronal networks were required for different finger patterns; a complicated task required multi-finger combinations and a complicated neuronal network comprised a large number of neurons.
基金supported by the National Natural Science Foundation of China(#92254302,#32293202,#2019YFA0801400 to S.J.,and#31988101 to A.M.).
文摘Clathrin-mediated endocytosis has been implicated in various physiological processes,including nutrient uptake,signal transduction,synaptic vesicle recycling,maintenance of cell polarity,and antigen presentation.Despite prior knowledge of its importance as a key regulator in promoting clathrin-mediated endocytosis,the physiological function of α-and γ-adaptin binding protein(aagab)remains elusive.In this study,we investigate the biological function of aagab during zebrafish development.We establish a loss-of-function mutant of aagab in zebrafish,revealing impaired swimming and early larval mortality.Given the high expression level of aagab in the brain,we probe into its physiological role in the nervous system.aagab mutants display subdued calcium responses and local field potential in the optic tectal neurons,aligning with reduced neurotransmitter release(e.g.,norepinephrine)in the tectal neuropil of aagab mutants.Overexpressing aagab mRNA or nervous stimulant treatment in mutants restores neurotransmitter release,calcium responses,swimming ability,and survival.Furthermore,our observations show delayed release of FM 1-43 in AAGAB knockdown differentiated neuroblastoma cells,pointing towards a probable link to defective clathrin-mediated synaptic vesicle recycling.In conclusion,our study underscores the significance of Aagab in neurobiology and suggests its potential impacts on neurological disorders.
文摘Recent years have witnessed the fascinating development of imaging approaches to studying neural activities; this progress has been based on an influx of ideas and methods from molecular biology and optical engineering. Here we review the design and application of genetically encoded indicators for calcium ions, membrane potential and neurotransmitters. We also summarize common strategies for the design and optimization of genetically encoded neural activity indicators.
文摘Brain activity is highly structured within local microcircuits and brain-wide networks,involving exquisite coordination across multiple brain regions in both superficial and deep structures^([1]).To understand how brain represents,transforms and communicates in-
基金Project supported by the Key Program of National Natural Science Foundation of China (Grant No. 50937001),the National Natural Science Foundation of China (Grant Nos. 50877028, 10947011 and 10862001)the High Technology Research and Development Program of China (Grant No. 2007AA05Z229)+1 种基金the Science Foundation of Guangdong Province, China (Grant No. 8251064101000014)the Construction of Key Laboratories in Universities of Guangxi Province, China (Grant No. 200912)
文摘Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied.
基金supported by the National Natural Science Foundation of China under Grant No. 60571019, 30525030, 30870655, and 60736029.
文摘Currently hemodynamic-based functional MRI technique is of limitation in temporal resolution. As neural activities in the brain accompany with current induced neuronal magnetic fields (NMF), it is possible to utilize MRI to detect NMF directly thus to improve the temporal resolution. In this work, the contribution of dendrite branch to NMF is investigated by numeric simulation. The results indicate that the existence of dendrite branch may enhance the detectability of NMF by MRI directly.
文摘Using a near-infrared(NIR)light flood-illumination imager equipped with a high-speed(120 Hz)CCD camera,we demonstrated optical imaging of stimulus-evoked retinal activity in isolated,but intact,frog eye.Both fast and slow transient intrinsic optical signals(IOSs)were observed.Fast optical response occurred immediately after the stimulus onset,could reach peak magnitude within 100 ms,and correlated tightly with ON and OFF edges of the visible light stimulus;while slow optical response lasted a relatively long time(many seconds).High-resolution images revealed both positive(increasing)and negative(decreasing)IOSs,and dynamic optical change at individual CCD pixels could often exceed 10%of the background light intensity.Our experiment on isolated eye suggests that further development of fast,high(sub-cellular)resolution fundus imager will allow robust detection of fast IOSs in vivo,and thus allow noninvasive,three-dimensional evaluation of retinal neural function.
基金supported by the MKE(The Ministry of Knowledge Economy,Korea)theITRC(Information Technology Research Center)support program(NIPA-2010-C1090-1021-0010)
文摘This paper presents a novel method for inferring the odor based on neural activities observed from rats' main olfactory bulbs.Multi-channel extra-cellular single unit recordings are done by micro-wire electrodes(Tungsten,50 μm,32 channels)implanted in the mitral/tufted cell layers of the main olfactory bulb of the anesthetized rats to obtain neural responses to various odors.Neural responses as a key feature are measured by subtraction firing rates before stimulus from after.For odor inference,a decoding method is developed based on the ML estimation.The results show that the average decoding accuracy is about 100.0%,96.0%,and 80.0% with three rats,respectively.This work has profound implications for a novel brain-machine interface system for odor inference.
基金Supported by National Natural Science Foundation of China(No.59975001 and 50205019).
文摘An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.
文摘The ability to predict the future behavior of solar activity has become extremely import due to its effect on the environment near the Earth. Predictions of both the amplitude and timing of the next solar cycle will assist in estimating the various consequences of space weather. The level of solar activity is usually expressed by in- ternational sunspot number (Rz). Several prediction techniques have been applied and have achieved varying degrees of success in the domain of solar activity prediction. We predict a solar index (Rz) in solar cycle 24 by using a neural network method. The neural network technique is used to analyze the time series of solar activity. According to our predictions of yearly sunspot number, the maximum of cycle 24 will occur in the year 2013 and will have an annual mean sunspot number of 65. Finally, we discuss our results in order to compare them with other suggested predictions.
文摘BACKGROUND: The interpretation of non-verbal social signals relies heavily on the ability to perceive biological motion. The posterior superior temporal sulcus is an important part of a network involved in biological motion processing. However, the underlying functional organization remains poorly understood. Several studies have suggested topographical representation of motion from different body parts within this region. However, other studies have shown that the posterior superior temporal sulcus responds equally to any body part. OBJECTIVE: Through the use of functional magnetic resonance imaging, the effects of socially relevant biological motion stimuli to activate a specific cortical area within posterior superior temporal sulcus, even if different body parts are involved in motion, will be analyzed. DESIGN, TIME AND SETTING: A functional magnetic resonance imaging, block-design was performed at the Magnetic Resonance Imaging, Surgical Medical Investigation Center, Havana, Cuba between 2004 and 2005. PARTICIPANTS: Thirteen healthy volunteers, from 19 to 55 years of age and compris!ng eight males and five females, were included in the study. METHODS: A conjunction analysis of responses to natural, dynamic, fearful, facial expressions and point-light, body-motion animations. MAIN OUTCOME MEASURES: The corresponding functionally specialized areas, as well as neural areas significant for both types of stimuli, were identified. RESULTS: One region within the posterior superior temporal sulcus of the right hemisphere was equally activated by facial and body complex motion. CONCLUSION: A site of common neural activity existed within the posterior superior temporal sulcus, which was not specific to a biological motion type. In addition, the activity was not related to a topographically organized body-part map, which suggested high-level visual representation of biological motion in this region.
基金supported by the National Natural Science Foundation of China,Nos.32100899(to KZL),31830035(to FQX),31771156(to FQX),21921004(to FQX)the National Science and Technology Innovation 2030,No.2021ZD0201003(to FQX)+2 种基金the Key-Area Research and Development Program of Guangdong Province,No.2018B030331001(to FQX)the Strategic Priority Research Program of the Chinese Academy of Sciences,No.XDB32030200(to FQX)the Shenzhen Key Laboratory of Viral Vectors for Biomedicine,No.ZDSYS20200811142401005(to FQX)。
文摘Analyzing the structure and function of the brain's neural network is critical for identifying the working principles of the brain and the mechanisms of brain diseases.Recombinant rabies viral vectors allow for the retrograde labeling of projection neurons and cell type-specific trans-monosynaptic tracing,making these vectors powerful candidates for the dissection of synaptic inputs.Although several attenuated rabies viral vectors have been developed,their application in studies of functional networks is hindered by the long preparation cycle and low yield of these vectors.To overcome these limitations,we developed an improved production system for the rapid rescue and preparation of a high-titer CVS-N2c-ΔG virus.Our results showed that the new CVS-N2c-ΔG-based toolkit performed remarkably:(1)N2cG-coated CVS-N2c-ΔG allowed for efficient retrograde access to projection neurons that were unaddressed by rAAV9-Retro,and the efficiency was six times higher than that of rAAV9-Retro;(2)the trans-monosynaptic efficiency of oG-mediated CVS-N2c-ΔG was 2–3 times higher than that of oG-mediated SAD-B19-ΔG;(3)CVS-N2c-ΔG could delivery modified genes for neural activity monitoring,and the time window during which this was maintained was 3 weeks;and(4)CVS-N2c-ΔG could express sufficient recombinases for efficient transgene recombination.These findings demonstrate that new CVS-N2c-ΔG-based toolkit may serve as a versatile tool for structural and functional studies of neural circuits.
基金supported by grants from the Natural Science Research Project of Institution of Higher Education of Jiangsu Province(No.11KJB180006)National Natural Science Foundation of China(No.21277074 and No.81302458)
文摘The human pregnane X receptor(hPXR) plays a critical role in the metabolism, transport and clearance of xenobiotics in the liver and intestine. The hPXR can be activated by a structurally diverse of drugs to initiate clinically relevant drug-drug interactions. In this article, in silico investigation was performed on a structurally diverse set of drugs to identify critical structural features greatly related to their agonist activity towards h PXR. Heuristic method(HM)-Best Subset Modeling(BSM) and HM-Polynomial Neural Networks(PNN) were utilized to develop the linear and non-linear quantitative structure-activity relationship models. The applicability domain(AD) of the models was assessed by Williams plot. Statistically reliable models with good predictive power and explain were achieved(for HM-BSM, r^2=0.881, q^2_(LOO)=0.797, q^2_(EXT)=0.674; for HM-PNN, r^2=0.882, q^2_(LOO)=0.856, q^2_(EXT)=0.655). The developed models indicated that molecular aromatic and electric property, molecular weight and complexity may govern agonist activity of a structurally diverse set of drugs to h PXR.
基金This work was supported by the Medical Scientist Training Program T32GM007250Predoctoral Training in Molecular Therapeutics Program T32GM008803(to EHC).
文摘A long-standing goal of spinal cord injury research is to develop effective repair strategies,which can restore motor and sensory functions to near-normal levels.Recent advances in clinical management of spinal cord injury have significantly improved the prognosis,survival rate and quality of life in patients with spinal cord injury.In addition,a significant progress in basic science research has unraveled the underlying cellular and molecular events of spinal cord injury.Such efforts enabled the development of pharmacologic agents,biomaterials and stem-cell based therapy.Despite these efforts,there is still no standard care to regenerate axons or restore function of silent axons in the injured spinal cord.These challenges led to an increased focus on another therapeutic approach,namely neuromodulation.In multiple animal models of spinal cord injury,epidural electrical stimulation of the spinal cord has demonstrated a recovery of motor function.Emerging evidence regarding the efficacy of epidural electrical stimulation has further expanded the potential of epidural electrical stimulation for treating patients with spinal cord injury.However,most clinical studies were conducted on a very small number of patients with a wide range of spinal cord injury.Thus,subsequent studies are essential to evaluate the therapeutic potential of epidural electrical stimulation for spinal cord injury and to optimize stimulation parameters.Here,we discuss cellular and molecular events that continue to damage the injured spinal cord and impede neurological recovery following spinal cord injury.We also discuss and summarize the animal and human studies that evaluated epidural electrical stimulation in spinal cord injury.
基金supported by Multiple Sclerosis Society of Canada(MSSOC),No.2362(to VMKV)Canadian Institutes of Health Research(CIHR),No.14238(to VMKV)were supported by University of Saskatchewan College of Medicine Research Awards(Co MGRADs)。
文摘Our lab has shown that brief electrical nerve stimulation(ES)has a dramatic impact on remyelination of lysophosphatidyl choline(LPC)-induced focally demyelinated rat peripheral nerves,while also inducing an axon-protective phenotype and shifting macrophages from a predominantly pro-inflammatory toward a pro-repair phenotype.Whether this same potential exists in the central nervous system is not known.Thus,for proof of principle studies,the peripheral nerve demyelination and ES model was adapted to the central nervous system,whereby a unilateral focal LPC-induced demyelination of the dorsal column at the lumbar enlargement where the sciatic nerve afferents enter was created,so that subsequent ipsilateral sciatic nerve ES results in increased neural activity in the demyelinated axons.Data reveal a robust focal demyelination at 7 days post-LPC injection.Delivery of 1-hour ES at 7 days post-LPC polarizes macrophages/microglia toward a pro-repair phenotype when examined at 14 days post-LPC;results in smaller LPC-associated regions of inflammation compared to non-stimulated controls;results in significantly more cells of the oligodendroglial lineage in the demyelinated region;elevates myelin basic protein levels;and shifts the paranodal protein Caspr along demyelinated axons to a more restricted distribution,consistent with reformation of the paranodes of the nodes of Ranvier.ES also significantly enhanced levels of phosphorylated neurofilaments detected in the zones of demyelination,which has been shown to confer axon protection.Collectively these findings support that strategies that increase neural activity,such as brief electrical stimulation,can be beneficial for promoting intrinsic repair following focal demyelinating insults in demyelinating diseases such as multiple sclerosis.All animal procedures performed were approved by the University of Saskatchewan's Animal Research Ethics Board(protocol#20090087;last approval date:November 5,2020).
基金supported by the JSPSKAKENHI Grant-in-Aid for Scientific Research(B),Grant Numbers24700572 and 30614276
文摘Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.