期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Optimizing control of coal flotation by neuro-immune algorithm 被引量:3
1
作者 Yang Xiaoping Chris Aldrich 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期407-413,共7页
Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online d... Coal flotation is widely used to separate commercially valuable coal from the fine ore slurry, and is an industrial process with nonlinear, multivariable, time-varying and long time-delay characteristics. The online detection of ash content of products as the operation performance evaluation in the flotation system is extraordinarily difficult because of the low solid content and numerous micro-bubbles in the slurry. Moreover, it is time-consuming by manual analysis. Consequently, the optimal separation is not usually maintained. A novel technique, called the neuro-immune algorithm (NIA) inspired by the biological nervous and immune systems, is presented in this paper for predicting the ash content of clean coal and performing the optimizing control to the coal flotation system. The proposed algorithm integrates the deeply-studied artificial neural network (ANN) and the developing artificial immune system (AIS). A two-layer back-propagation network was constructed offline based on the historical process data under the best system situation, using five parameters: the flow and the density of raw slurry, the input flows of water, the kerosene and the GF oil, as the inputs and the ash content of clean coal as the output. The immune cell of AIS is made up of six parameters above as the antigen. The cytokine based clone selection algorithm is used to produce the relative antibody. The detailed computation procedures about the hybrid neuro-immune algorithm are minutely discussed. The ash content of clean coal was predicted by NIA using the practical process data s: (308.6 174.7 146.1 43.6 4.0 9.4), and the absolute difference between the actual and computed ash content values was 0.0967%. The optimizing control on NIA was simulated considering two different situations where the ash content of clean coal was controlled downward from 10.00% or upward from 9.20% predicted by ANN to the target value 9.50%. The results indicate that the target ash content and the value of controlling parameters are obtained after several control cycles. 展开更多
关键词 Optimizing control Neuro-immune algorithm neural networks immune system Coal flotation
下载PDF
Multi-agent immune recognition of water mine model
2
作者 LIU Hai-bo GU Guo-chang +1 位作者 SHEN Jing FU Yan 《Journal of Marine Science and Application》 2005年第2期44-49,共6页
It is necessary for mine countermeasure systems to recognise the model of a water mine before destroying because the destroying measures to be taken must be determined according to mine model. In this paper, an immune... It is necessary for mine countermeasure systems to recognise the model of a water mine before destroying because the destroying measures to be taken must be determined according to mine model. In this paper, an immune neural network (INN) along with water mine model recognition system based on multi-agent system is proposed. A modified clonal selection algorithm for constructing such an INN is presented based on clonal selection principle. The INN is a two-layer Boolean network whose number of outputs is adaptable according to the task and the affinity threshold. Adjusting the affinity threshold can easily control different recognition precision, and the affinity threshold also can control the capability of noise tolerance. 展开更多
关键词 multi-agent system immune neural network clonal selection pattern recognition water mine model
下载PDF
Real-time immune-inspired optimum state-of-charge trajectory estimation using upcoming route information preview and neural networks for plug-in hybrid electric vehicles fuel economy 被引量:2
3
作者 Ahmad MOZAFFARI Mahyar VAJEDI Nasser L. AZAD 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第2期154-167,共14页
The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug... The main proposition of the current investigation is to develop a computational intelligence-based framework which can be used for the real-time estimation of optimum battery state-of-charge (SOC) trajectory in plug-in hybrid electric vehicles (PHEVs). The estimated SOC trajectory can be then employed for an intelligent power management to significantly improve the fuel economy of the vehicle. The devised intelligent SOC trajectory builder takes advantage of the upcoming route information preview to achieve the lowest possible total cost of electricity and fossil fuel. To reduce the complexity of real-time optimization, the authors propose an immune system-based clustering approach which allows categoriz- ing the route information into a predefined number of segments. The intelligent real-time optimizer is also inspired on the basis of interactions in biological immune systems, and is called artificial immune algorithm (AIA). The objective function of the optimizer is derived from a computationally efficient artificial neural network (ANN) which is trained by a database obtained from a high-fidelity model of the vehicle built in the Autonomic software. The simulation results demonstrate that the integration of immune inspired clustering tool, AIA and ANN, will result in a powerful framework which can generate a near global optimum SOC trajectory for the baseline vehicle, that is, the Toyota Prius PHEV. The outcomes of the current investigation prove that by taking advantage of intelligent approaches, it is possible to design a computationally efficient and powerful SOC trajectory builder for the intelligent power management of PHEVs. 展开更多
关键词 trip information preview intelligent transpor-tation state-of-charge trajectory builder immune systems artificial neural network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部