Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show t...Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.展开更多
By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power pla...By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.展开更多
For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a tra...For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.展开更多
Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though ...Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.展开更多
A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding proces...A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.展开更多
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。...为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。展开更多
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro...After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.展开更多
文摘Guided by the principle of neural network, an intelligent PID controller based on neural network is devised and applied to control of constant temperature and constant liquidlevel system. The experiment results show that this controller has high accuracy and strong robustness and good characters.
基金supported by the project of "SDUST Qunxing Program"(No.qx0902075)
文摘By combining the Back-Propagation (BP) neural network with conventional proportional Integral Derivative (PID) controller, a new temperature control strategy of the export steam in supercritical electric power plant is put forward. This scheme can effectively overcome the large time delay, inertia of the export steam and the influencee of object in varying operational parameters. Thus excellent control quality is obtaitud. The present paper describes the development and application of neural network based controller to control the temperature of the boiler's export steam. Through simulation in various situations, it validates that the control quality of this control system is apparently superior to the conventional PID control system.
基金This paper is supported by the National Foundamental Research Program of China (No. 2002CB312201), the State Key Program of NationalNatural Science of China (No. 60534010), the Funds for Creative Research Groups of China (No. 60521003), and Program for Changjiang Scholarsand Innovative Research Team in University (No. IRT0421).
文摘For a class of complex industrial processes with strong nonlinearity, serious coupling and uncertainty, a nonlinear decoupling proportional-integral-differential (PID) controller is proposed, which consists of a traditional PID controller, a decoupling compensator and a feedforward compensator for the unmodeled dynamics. The parameters of such controller is selected based on the generalized minimum variance control law. The unmodeled dynamics is estimated and compensated by neural networks, a switching mechanism is introduced to improve tracking performance, then a nonlinear decoupling PID control algorithm is proposed. All signals in such switching system are globally bounded and the tracking error is convergent. Simulations show effectiveness of the algorithm.
文摘Web service applications are increasing tremendously in support of high-level businesses.There must be a need of better server load balancing mechanism for improving the performance of web services in business.Though many load balancing methods exist,there is still a need for sophisticated load bal-ancing mechanism for not letting the clients to get frustrated.In this work,the ser-ver with minimum response time and the server having less traffic volume were selected for the aimed server to process the forthcoming requests.The Servers are probed with adaptive control of time with two thresholds L and U to indicate the status of server load in terms of response time difference as low,medium and high load by the load balancing application.Fetching the real time responses of entire servers in the server farm is a key component of this intelligent Load balancing system.Many Load Balancing schemes are based on the graded thresholds,because the exact information about the networkflux is difficult to obtain.Using two thresholds L and U,it is possible to indicate the load on particular server as low,medium or high depending on the Maximum response time difference of the servers present in the server farm which is below L,between L and U or above U respectively.However,the existing works of load balancing in the server farm incorporatefixed time to measure real time response time,which in general are not optimal for all traffic conditions.Therefore,an algorithm based on Propor-tional Integration and Derivative neural network controller was designed with two thresholds for tuning the timing to probe the server for near optimal perfor-mance.The emulation results has shown a significant gain in the performance by tuning the threshold time.In addition to that,tuning algorithm is implemented in conjunction with Load Balancing scheme which does not tune thefixed time slots.
基金National Nature Science Foundation of China (No.50575074)
文摘A controller based on a PID neural network (PIDNN) is proposed for an arc welding power source whose output characteristic in responding to a given value is quickly and intelligently controlled in the welding process. The new method syncretizes the PID control strategy and neural network to control the welding process intelligently, so it has the merit of PID control rules and the trait of better information disposal ability of the neural network. The results of simulation show that the controller has the properties of quick response, low overshoot, quick convergence and good stable accuracy, which meet the requirements for control of the welding process.
文摘为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。
基金This project was supported by the National Natural Science Foundation of China(60174021)Natural Science Foundation Key Project of Tianjin(013800711).
文摘After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.