期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A back-propagation neural-network-based displacement back analysis for the identification of the geomechanical parameters of the Yonglang landslide in China 被引量:1
1
作者 YU Fang-wei PENG Xiong-zhi SU Li-jun 《Journal of Mountain Science》 SCIE CSCD 2017年第9期1739-1750,共12页
Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located... Xigeda formation is a type of hundredmeter-thick lacustrine sediments of being prone to triggering landslides along the trunk channel and tributaries of the upper Yangtze River in China. The Yonglang landslide located near Yonglang Town of Dechang County in Sichuan Province of China, which was a typical Xigeda formation landslide, was stabilized by anti-slide piles. Loading tests on a loading-test pile were conducted to measure the displacements and moments. The uncertainty of the tested geomechanical parameters of the Yonglang landslide over certain ranges would be problematic during the evaluation of the landslide. Thus, uniform design was introduced in the experimental design,and by which, numerical analyses of the loading-test pile were performed using Fast Lagrangian Analysis of Continua(FLAC3D) to acquire a database of the geomechanical parameters of the Yonglang landslide and the corresponding displacements of the loadingtest pile. A three-layer back-propagation neural network was established and trained with the database, and then tested and verified for its accuracy and reliability in numerical simulations. Displacement back analysis was conducted by substituting the displacements of the loading-test pile to the well-trained three-layer back-propagation neural network so as to identify the geomechanical parameters of the Yonglang landslide. The neuralnetwork-based displacement back analysis method with the proposed methodology is verified to be accurate and reliable for the identification of the uncertain geomechanical parameters of landslides. 展开更多
关键词 Back-propagation neural network Displacement back analysis Geomechanical parameters Landslide Numerical analysis Uniform design Xigeda formation
下载PDF
Prediction of Superconductivity for Oxides Based on Structural Parameters and Artificial Neural Network Method 被引量:1
2
作者 Xueye WANG and Huang SONG (Department of Chemistry, Xiangtan University, Xiangtan 411105, China) Guanzhou QIU and Dianzuo WANG (Department of Mineral Engineering, Central South University of Technology, Changsha 410083, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第4期435-438,共4页
Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distribu... Superconductive properties for oxides were predicted by artificial neural network (ANN) method with structural and chemical parameters as inputs. The predicted properties include superconductivity for oxides, distributed ranges of the superconductive transition temperature (Tc) for complex oxides, and Tc values for cuprate superconductors. The calculated results indicated that the adjusted ANN can be used to predict superconductive properties for unknown oxides. 展开更多
关键词 Prediction of Superconductivity for Oxides Based on Structural parameters and Artificial neural network Method
下载PDF
PARAMETERS INVERSION OF FLUID-SATURATED POROUS MEDIA BASED ON NEURAL NETWORKS
3
作者 Wei Peijun Zhang Zimao Han Hua 《Acta Mechanica Solida Sinica》 SCIE EI 2002年第4期342-349,共8页
The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element meth... The multi- layers feedforward neural network is used for inversion ofmaterial constants of fluid-saturated porous media. The direct analysis of fluid-saturated porousmedia is carried out with the boundary element method. The dynamic displacement responses obtainedfrom direct analysis for prescribed material parameters constitute the sample sets training neuralnetwork. By virtue of the effective L-M training algorithm and the Tikhonov regularization method aswell as the GCV method for an appropriate selection of regu-larization parameter, the inversemapping from dynamic displacement responses to material constants is performed. Numerical examplesdemonstrate the validity of the neural network method. 展开更多
关键词 fluid-saturated porous media parameter inversion neural networks boundary elements
下载PDF
SEQUENTIAL DIAGNOSIS FOR A CENTRIFUGAL PUMP BASED ON FUZZY NEURAL NETWORK 被引量:1
4
作者 ZHOU Xiong WANG Huaqing +1 位作者 CHEN Peng TANG Yike 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期50-54,共5页
A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectivel... A sequential diagnosis method is proposed based on a fuzzy neural network realized by "the partially-linearized neural network (PNN)", by which the fault types of rotating machinery can be precisely and effectively distinguished at an early stage on the basis of the possibilities of symptom parameters. The non-dimensional symptom parameters in time domain are defined for reflecting the features of time signals measured for the fault diagnosis of rotating machinery. The synthetic detection index is also proposed to evaluate the sensitivity of non-dimensional symptom parameters for detecting faults. The practical example of condition diagnosis for detecting and distinguishing fault states of a centrifugal pump system, such as cavitation, impeller eccentricity which often occur in a centrifugal pump system, are shown to verify the efficiency of the method proposed in this paper. 展开更多
关键词 Sequential diagnosis Fuzzy neural network Symptom parameter Centrifugal pump Rotating machinery
下载PDF
Connection Admission Control in ATM Networks Based on the Foreground and Background Neural Networks 被引量:1
5
作者 Ma Xudong Luee Tingjie and Liang Xiongjian(Department of Management Engineering Beijing University of Posts and Telecommunications,Beijing 100088, P.R.China) 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 1996年第1期15-20,共6页
Connection Admission Control(CAC)in ATM networks is the set o/actions taken by the networkto decide whether to accept connection requests during the phase of call establishment or call re-negotiation.CAC is an integra... Connection Admission Control(CAC)in ATM networks is the set o/actions taken by the networkto decide whether to accept connection requests during the phase of call establishment or call re-negotiation.CAC is an integral part of the preventive congestion control in ATM networks whose aim is to ensurenetwork performance.The CAC algorithm has the characteristics of the multitude of control parameters,high degree of computation complexity and strong time restrictions.In this paper we present a CACmechanism featured by combination of foreground control and background learning which is based onneural networks having the capabilities of self-learning and high-Speed processing.A case study is given,after which we discuss the practicability of the proposed algorithm. 展开更多
关键词 s:connection admission control ATM networks neural networks usage parameter control
原文传递
A Systematic Design of Emulators for Multivariable Non Square and Nonlinear Systems
6
作者 Nesrine Bahri Asma Atig +2 位作者 Ridha Ben Abdennour Fabrice Druaux Dimitri Lefebvre 《International Journal of Automation and computing》 EI CSCD 2017年第6期742-754,共13页
In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square s... In this paper, multimodel and neural emulators are proposed for uncoupled multivariable nonlinear plants with unknown dynamics. The contributions of this paper are to extend the emulators to multivariable non square systems and to propose a systematic method to compute the multimodel synthesis parameters. The effectiveness of the proposed emulators is shown through two simulation examples. The obtained results are very satisfactory, they illustrate the performance of both emulators and show the advantages of the multimodel emulator relatively to the neural one. 展开更多
关键词 Uncoupled multimodel neural networks emulation multivariable nonlinear systems parameters estimation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部