In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the w...In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters.展开更多
Petrophysical properties have played an important and definitive role in the study of oil and gas reservoirs,necessitating that diverse kinds of information are used to infer these properties.In this study,the seismic...Petrophysical properties have played an important and definitive role in the study of oil and gas reservoirs,necessitating that diverse kinds of information are used to infer these properties.In this study,the seismic data related to the Hendijan oil field were utilised,along with the available logs of 7 wells of this field,in order to use the extracted relationships between seismic attributes and the values of the shale volume in the wells to estimate the shale volume in wells intervals.After the overall survey of data,a seismic line was selected and seismic inversion methods(model-based,band limited and sparse spike inversion)were applied to it.Amongst all of these techniques,the model-based method presented the better results.By using seismic attributes and artificial neural networks,the shale volume was then estimated using three types of neural networks,namely the probabilistic neural network(PNN),multi-layer feed-forward network(MLFN)and radial basic function network(RBFN).展开更多
Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep l...Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve.展开更多
In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation...In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.展开更多
Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in th...Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.展开更多
Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural ...Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.展开更多
On the basis of the relationship between the carbonate content and the stratal velocity and density, an exercise has been attempted using an artificial neural network on high-resolution seismic data for inversion of c...On the basis of the relationship between the carbonate content and the stratal velocity and density, an exercise has been attempted using an artificial neural network on high-resolution seismic data for inversion of carbonate content with limited well measarements as a control. The method was applied to the slope area of the northern South China Sea near ODP Sites 1146 and 1148, and the results are satisfaetory. Before inversion calculation, a stepwise regression method was applied to obtain six properties related most closely to the carbonate content variations among the various properties on the seismic profiles across or near the wells. These include the average frequency, the integrated absolute amplitude, the dominant frequency, the reflection time, the derivative instantaneous amplitude, and the instantaneous frequency. The results, with carbonate content errors of mostly ±5 % relative to those measured from sediment samples, show a relatively accurate picture of carbonate distribution along the slope profile. This method pioneers a new quantitative model to acquire carbonate content variations directly from high-resolution seismic data. It will provide a new approach toward obtaining substitutive high-resolution sediment data for earth system studies related to basin evolution, especially in discussing the coupling between regional sedimentation and climate change.展开更多
As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this prob...As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this problem,a model-data-driven seismic AVO(amplitude variation with offset)inversion method based on a space-variant objective function has been worked out.In this method,zero delay cross-correlation function and F norm are used to establish objective function.Based on inverse distance weighting theory,change of the objective function is controlled according to the location of the target CDP(common depth point),to change the constraint weights of training samples,initial low-frequency models,and seismic data on the inversion.Hence,the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data,and is suitable for identifying thin interbedded sand bodies.Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data,and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick.Tests on the field data of Lishui sag show that the inversion results of the proposed method have small relative error with well-log data,and can identify thin interbedded sandstone layers of about one-15th of the dominant wavelength thick with small sample data.展开更多
We propose to use a Few-Shot Learning(FSL)method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data.Recently,artificial neural network(ANN)demonstrate...We propose to use a Few-Shot Learning(FSL)method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data.Recently,artificial neural network(ANN)demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability.Hence,ANN method could provide a high resolution inversion result that are critical for reservoir characterization.However,the ANN approach requires plenty of labeled samples for training in order to obtain a satisfactory result.For the common problem of scarce samples in the ANN seismic inversion,we create a novel pre-stack seismic inversion method that takes advantage of the FSL.The results of conventional inversion are used as the auxiliary dataset for ANN based on FSL,while the well log is regarded the scarce training dataset.According to the characteristics of seismic inversion(large amount and high dimensional),we construct an arch network(A-Net)architecture to implement this method.An example shows that this method can improve the accuracy and resolution of inversion results.展开更多
Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in fron...Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.展开更多
基金This research is jointly funded by the National Key Research and Development Program of China(No.2017 YFC0307401)the National Natural Science Foundation of China(No.41230318)+1 种基金the Fundamental Research Funds for the Central Universities(No.201964017)and the National Science and Technology Major Project of China(No.2016ZX05024-001-002).
文摘In Recent years,seismic data have been widely used in seismic oceanography for the inversion of oceanic parameters represented by conductivity temperature depth(CTD).Using this technique,researchers can identify the water structure with high horizontal resolution,which compensates for the deficiencies of CTD data.However,conventional inversion methods are modeldriven,such as constrained sparse spike inversion(CSSI)and full waveform inversion(FWI),and typically require prior deterministic mapping operators.In this paper,we propose a novel inversion method based on a convolutional neural network(CNN),which is purely data-driven.To solve the problem of multiple solutions,we use stepwise regression to select the optimal attributes and their combination and take two-dimensional images of the selected attributes as input data.To prevent vanishing gradients,we use the rectified linear unit(ReLU)function as the activation function of the hidden layer.Moreover,the Adam and mini-batch algorithms are combined to improve stability and efficiency.The inversion results of field data indicate that the proposed method is a robust tool for accurately predicting oceanic parameters.
文摘Petrophysical properties have played an important and definitive role in the study of oil and gas reservoirs,necessitating that diverse kinds of information are used to infer these properties.In this study,the seismic data related to the Hendijan oil field were utilised,along with the available logs of 7 wells of this field,in order to use the extracted relationships between seismic attributes and the values of the shale volume in the wells to estimate the shale volume in wells intervals.After the overall survey of data,a seismic line was selected and seismic inversion methods(model-based,band limited and sparse spike inversion)were applied to it.Amongst all of these techniques,the model-based method presented the better results.By using seismic attributes and artificial neural networks,the shale volume was then estimated using three types of neural networks,namely the probabilistic neural network(PNN),multi-layer feed-forward network(MLFN)and radial basic function network(RBFN).
基金financially supported by the NSFC(Grant No.41974126 and 41674116)the National Key Research and Development Program of China(Grant No.2018YFA0702501)the 13th 5-Year Basic Research Program of China National Petroleum Corporation(CNPC)(2018A-3306)。
文摘Deep learning has achieved great success in a variety of research fields and industrial applications.However,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based methods.In order to tackle this problem,we propose a novel seismic impedance inversion method based on a cycle-consistent generative adversarial network(Cycle-GAN).The proposed Cycle-GAN model includes two generative subnets and two discriminative subnets.Three kinds of loss,including cycle-consistent loss,adversarial loss,and estimation loss,are adopted to guide the training process.Benefit from the proposed structure,the information contained in unlabeled data can be extracted,and adversarial learning further guarantees that the prediction results share similar distributions with the real data.Moreover,a neural network visualization method is adopted to show that the proposed CNN model can learn more distinguishable features than the conventional CNN model.The robustness experiments on synthetic data sets show that the proposed method can achieve better performances than other methods in most cases.And the blind-well experiments on real seismic profiles show that the predicted impedance curve of the proposed method maintains a better correlation with the true impedance curve.
基金supported by the National Major Science and Technology Special Project(No.2016ZX05026-002).
文摘In this paper,the recurrent neural network structure of a bidirectional long shortterm memory network(Bi-LSTM)with special memory cells that store information is used to characterize the deep features of the variation pattern between logging and seismic data.A mapping relationship model between high-frequency logging data and low-frequency seismic data is established via nonlinear mapping.The seismic waveform is infinitely approximated using the logging curve in the low-frequency band to obtain a nonlinear mapping model of this scale,which then stepwise approach the logging curve in the high-frequency band.Finally,a seismic-inversion method of nonlinear mapping multilevel well–seismic matching based on the Bi-LSTM network is developed.The characteristic of this method is that by applying the multilevel well–seismic matching process,the seismic data are stepwise matched to the scale range that is consistent with the logging curve.Further,the matching operator at each level can be stably obtained to effectively overcome the problems that occur in the well–seismic matching process,such as the inconsistency in the scale of two types of data,accuracy in extracting the seismic wavelet of the well-side seismic traces,and multiplicity of solutions.Model test and practical application demonstrate that this method improves the vertical resolution of inversion results,and at the same time,the boundary and the lateral characteristics of the sand body are well maintained to improve the accuracy of thin-layer sand body prediction and achieve an improved practical application effect.
基金Projects 40574057 and 40874054 supported by the National Natural Science Foundation of ChinaProjects 2007CB209400 by the National Basic Research Program of ChinaFoundation of China University of Mining and Technology (OF4471)
文摘Non-liner wave equation inversion,wavelet analysis and artificial neural networks were used to obtain stratum parameters and the distribution of thin coal seams.The lithology of the water-bearing/resisting layer in the Quaternary system was also predicted.The implementation process included calculating the well log parameters,stratum contrasting the seismic data and the well logs,and extracting,studying and predicting seismic attributes.Seismic inversion parameters,including the layer velocity and wave impedance,were calculated and effectively used for prediction and analysis.Prior knowledge and seismic interpretation were used to remedy a dearth of seismic data during the inversion procedure.This enhanced the stability of the inversion method.Non-linear seismic inversion and artificial neural networks were used to interpret coal seismic lithology and to study the water-bearing/resisting layer in the Quaternary system.Interpretation of the 1~2 m thin coal seams,and also of the water-bearing/resisting layer in the Quaternary system,is provided.The upper mining limit can be lifted from 60 m to 45 m.The predictions show that this method can provide reliable data useful for thin coal seam exploitation and for lifting the upper mining limit,which is one of the principles of green mining.
文摘Seismic inversion and basic theory are briefly presented and the main idea of this method is introduced. Both non-linear wave equation inversion technique and Complete Utilization of Samples Information (CUSI) neural network analysis are used in lithological interpretation in Jibei coal field. The prediction results indicate that this method can provide reliable data for thin coal exploitation and promising area evaluation.
基金This paper is supported by the National Natural Science Foundation ofChina(Nos.40476030,40576031)andthe National Key Basic ResearchSpecial Foundation Project of China(No.G2000078501).
文摘On the basis of the relationship between the carbonate content and the stratal velocity and density, an exercise has been attempted using an artificial neural network on high-resolution seismic data for inversion of carbonate content with limited well measarements as a control. The method was applied to the slope area of the northern South China Sea near ODP Sites 1146 and 1148, and the results are satisfaetory. Before inversion calculation, a stepwise regression method was applied to obtain six properties related most closely to the carbonate content variations among the various properties on the seismic profiles across or near the wells. These include the average frequency, the integrated absolute amplitude, the dominant frequency, the reflection time, the derivative instantaneous amplitude, and the instantaneous frequency. The results, with carbonate content errors of mostly ±5 % relative to those measured from sediment samples, show a relatively accurate picture of carbonate distribution along the slope profile. This method pioneers a new quantitative model to acquire carbonate content variations directly from high-resolution seismic data. It will provide a new approach toward obtaining substitutive high-resolution sediment data for earth system studies related to basin evolution, especially in discussing the coupling between regional sedimentation and climate change.
文摘As sandstone layers in thin interbedded section are difficult to identify,conventional model-driven seismic inversion and data-driven seismic prediction methods have low precision in predicting them.To solve this problem,a model-data-driven seismic AVO(amplitude variation with offset)inversion method based on a space-variant objective function has been worked out.In this method,zero delay cross-correlation function and F norm are used to establish objective function.Based on inverse distance weighting theory,change of the objective function is controlled according to the location of the target CDP(common depth point),to change the constraint weights of training samples,initial low-frequency models,and seismic data on the inversion.Hence,the proposed method can get high resolution and high-accuracy velocity and density from inversion of small sample data,and is suitable for identifying thin interbedded sand bodies.Tests with thin interbedded geological models show that the proposed method has high inversion accuracy and resolution for small sample data,and can identify sandstone and mudstone layers of about one-30th of the dominant wavelength thick.Tests on the field data of Lishui sag show that the inversion results of the proposed method have small relative error with well-log data,and can identify thin interbedded sandstone layers of about one-15th of the dominant wavelength thick with small sample data.
基金Wupport from the National Natural Science Foundation of China(Grant No.42130812,42174151,and 41804126).
文摘We propose to use a Few-Shot Learning(FSL)method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data.Recently,artificial neural network(ANN)demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability.Hence,ANN method could provide a high resolution inversion result that are critical for reservoir characterization.However,the ANN approach requires plenty of labeled samples for training in order to obtain a satisfactory result.For the common problem of scarce samples in the ANN seismic inversion,we create a novel pre-stack seismic inversion method that takes advantage of the FSL.The results of conventional inversion are used as the auxiliary dataset for ANN based on FSL,while the well log is regarded the scarce training dataset.According to the characteristics of seismic inversion(large amount and high dimensional),we construct an arch network(A-Net)architecture to implement this method.An example shows that this method can improve the accuracy and resolution of inversion results.
基金The research work described herein was funded by the National Natural Science Foundation of China(Grant No.51922067)The Key Research and Development Plan of Shandong Province of China(Grant No.2020ZLYS01)Taishan Scholars Program of Shan-dong Province of China(Grant No.tsqn201909003).
文摘Excavation under complex geological conditions requires effective and accurate geological forward-prospecting to detect the unfavorable geological structure and estimate the classification of surround-ing rock in front of the tunnel face.In this work,a forward-prediction method for tunnel geology and classification of surrounding rock is developed based on seismic wave velocity layered tomography.In particular,for the problem of strong multi-solution of wave velocity inversion caused by few ray paths in the narrow space of the tunnel,a layered inversion based on regularization is proposed.By reducing the inversion area of each iteration step and applying straight-line interface assumption,the convergence and accuracy of wave velocity inversion are effectively improved.Furthermore,a surrounding rock classification network based on autoencoder is constructed.The mapping relationship between wave velocity and classification of surrounding rock is established with density,Poisson’s ratio and elastic modulus as links.Two numerical examples with geological conditions similar to that in the field tunnel and a field case study in an urban subway tunnel verify the potential of the proposed method for practical application.