This paper deals with deriving the properties of updated neural network model that is exploited to identify an unknown nonlinear system via the standard gradient learning algorithm. The convergence of this algorithm f...This paper deals with deriving the properties of updated neural network model that is exploited to identify an unknown nonlinear system via the standard gradient learning algorithm. The convergence of this algorithm for online training the three-layer neural networks in stochastic environment is studied. A special case where an unknown nonlinearity can exactly be approximated by some neural network with a nonlinear activation function for its output layer is considered. To analyze the asymptotic behavior of the learning processes, the so-called Lyapunov-like approach is utilized. As the Lyapunov function, the expected value of the square of approximation error depending on network parameters is chosen. Within this approach, sufficient conditions guaranteeing the convergence of learning algorithm with probability 1 are derived. Simulation results are presented to support the theoretical analysis.展开更多
At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns st...At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated.展开更多
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec...Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.展开更多
Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,exces...Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing.展开更多
With the rapid development of sports,the number of sports images has increased dramatically.Intelligent and automatic processing and analysis of moving images are significant,which can not only facilitate users to qui...With the rapid development of sports,the number of sports images has increased dramatically.Intelligent and automatic processing and analysis of moving images are significant,which can not only facilitate users to quickly search and access moving images but also facilitate staff to store and manage moving image data and contribute to the intellectual development of the sports industry.In this paper,a method of table tennis identification and positioning based on a convolutional neural network is proposed,which solves the problem that the identification and positioning method based on color features and contour features is not adaptable in various environments.At the same time,the learning methods and techniques of table tennis detection,positioning,and trajectory prediction are studied.A deep learning framework for recognition learning of rotating flying table tennis is put forward.The mechanism and methods of positioning,trajectory prediction,and intelligent automatic processing of moving images are studied,and the self-built data sets are trained and verified.展开更多
For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and de...For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.展开更多
Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in...Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in order to achieve high results by using minimal computational resources to train the architecture.Our proposed framework to automated design is aimed at resolving this problem.The proposed framework is focused on a genetic algorithm that develops a population of CNN models in order to find the architecture that is the best fit.In comparison to the co-authored work,our proposed framework is concerned with creating lightweight architectures with a limited number of parameters while retaining a high degree of validity accuracy utilizing an ensemble learning technique.This architecture is intended to operate on low-resource machines,rendering it ideal for implementation in a number of environments.Four common benchmark image datasets are used to test the proposed framework,and it is compared to peer competitors’work utilizing a range of parameters,including accuracy,the number of model parameters used,the number of GPUs used,and the number of GPU days needed to complete the method.Our experimental findings demonstrated a significant advantage in terms of GPU days,accuracy,and the number of parameters in the discovered model.展开更多
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on f...Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks.展开更多
The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subje...The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.展开更多
The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms ...The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms are significant potentials in nonlinear approximation ability,convergent speeds and global optimization than the classical neural networks and the standard BP algorithm, and related computer simulations and theoretical analysis are given too.展开更多
The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network st...The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm展开更多
The power transfer capability of the smart transmission gridconnected networks needs to be reduced by inter-area oscillations.Due to the fact that inter-area modes of oscillations detain and make instability of power ...The power transfer capability of the smart transmission gridconnected networks needs to be reduced by inter-area oscillations.Due to the fact that inter-area modes of oscillations detain and make instability of power transmission networks.This fact is more noticeable in smart grid-connected systems.The smart grid infrastructure has more renewable energy resources installed for its operation.To overcome this problem,a deep learning widearea controller is proposed for real-time parameter control and smart power grid resilience on oscillations inter-area modes.The proposed Deep Wide Area Controller(DWAC)uses the Deep Belief Network(DBN).The network weights are updated based on real-time data from Phasor measurement units.Resilience assessment based on failure probability,financial impact,and time-series data in grid failure management determine the norm H2.To demonstrate the effectiveness of the proposed framework,a time-domain simulation case study based on the IEEE-39 bus system was performed.For a one-channel attack on the test system,the resiliency index increased to 0.962,and inter-area dampingξwas reduced to 0.005.The obtained results validate the proposed deep learning algorithm’s efficiency on damping inter-area and local oscillation on the 2-channel attack as well.Results also offer robust management of power system resilience and timely control of the operating conditions.展开更多
This paper presents a modified structure of a neural network with tunable activation function and provides a new learning algorithm for the neural network training. Simulation results of XOR problem, Feigenbaum functi...This paper presents a modified structure of a neural network with tunable activation function and provides a new learning algorithm for the neural network training. Simulation results of XOR problem, Feigenbaum function, and Henon map show that the new algorithm has better performance than BP (back propagation) algorithm in terms of shorter convergence time and higher convergence accuracy. Further modifications of the structure of the neural network with the faster learning algorithm demonstrate simpler structure with even faster convergence speed and better convergence accuracy.展开更多
Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional...Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure identification of the CRFNN in order to confirm the fuzzy rules and their correlative parameters effectively. Furthermore, we improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability.展开更多
This paper investigates exponential stability and trajectory bounds of motions of equilibria of a class of associative neural networks under structural variations as learning a new pattern. Some conditions for the pos...This paper investigates exponential stability and trajectory bounds of motions of equilibria of a class of associative neural networks under structural variations as learning a new pattern. Some conditions for the possible maximum estimate of the domain of structural exponential stability are determined. The filtering ability of the associative neural networks contaminated by input noises is analyzed. Employing the obtained results as valuable guidelines, a systematic synthesis procedure for constructing a dynamical associative neural network that stores a given set of vectors as the stable equilibrium points as well as learns new patterns can be developed. Some new concepts defined here are expected to be the instruction for further studies of learning associative neural networks.展开更多
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith...This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.展开更多
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A...As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.展开更多
An integrated fuzzy min-max neural network(IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering,pure c...An integrated fuzzy min-max neural network(IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering,pure classification, or a hybrid clustering classification. Three experiments are designed to realize the aim. The serial input of samples is changed to parallel input, and the fuzzy membership function is substituted by similarity matrix. The experimental results show its superiority in contrast with the original method proposed by Simpson.展开更多
Soil swelling-related disaster is considered as one of the most devastating geo-hazards in modern history.Hence,proper determination of a soil’s ability to expand is very vital for achieving a secure and safe ground ...Soil swelling-related disaster is considered as one of the most devastating geo-hazards in modern history.Hence,proper determination of a soil’s ability to expand is very vital for achieving a secure and safe ground for infrastructures.Accordingly,this study has provided a novel and intelligent approach that enables an improved estimation of swelling by using kernelised machines(Bayesian linear regression(BLR)&bayes point machine(BPM)support vector machine(SVM)and deep-support vector machine(D-SVM));(multiple linear regressor(REG),logistic regressor(LR)and artificial neural network(ANN)),tree-based algorithms such as decision forest(RDF)&boosted trees(BDT).Also,and for the first time,meta-heuristic classifiers incorporating the techniques of voting(VE)and stacking(SE)were utilised.Different independent scenarios of explanatory features’combination that influence soil behaviour in swelling were investigated.Preliminary results indicated BLR as possessing the highest amount of deviation from the predictor variable(the actual swell-strain).REG and BLR performed slightly better than ANN while the meta-heuristic learners(VE and SE)produced the best overall performance(greatest R2 value of 0.94 and RMSE of 0.06%exhibited by VE).CEC,plasticity index and moisture content were the features considered to have the highest level of importance.Kernelized binary classifiers(SVM,D-SVM and BPM)gave better accuracy(average accuracy and recall rate of 0.93 and 0.60)compared to ANN,LR and RDF.Sensitivity-driven diagnostic test indicated that the meta-heuristic models’best performance occurred when ML training was conducted using k-fold validation technique.Finally,it is recommended that the concepts developed herein be deployed during the preliminary phases of a geotechnical or geological site characterisation by using the best performing meta-heuristic models via their background coding resource.展开更多
Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it ...Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art.展开更多
文摘This paper deals with deriving the properties of updated neural network model that is exploited to identify an unknown nonlinear system via the standard gradient learning algorithm. The convergence of this algorithm for online training the three-layer neural networks in stochastic environment is studied. A special case where an unknown nonlinearity can exactly be approximated by some neural network with a nonlinear activation function for its output layer is considered. To analyze the asymptotic behavior of the learning processes, the so-called Lyapunov-like approach is utilized. As the Lyapunov function, the expected value of the square of approximation error depending on network parameters is chosen. Within this approach, sufficient conditions guaranteeing the convergence of learning algorithm with probability 1 are derived. Simulation results are presented to support the theoretical analysis.
基金supported by Project No.R-2023-23 of the Deanship of Scientific Research at Majmaah University.
文摘At present,the prediction of brain tumors is performed using Machine Learning(ML)and Deep Learning(DL)algorithms.Although various ML and DL algorithms are adapted to predict brain tumors to some range,some concerns still need enhancement,particularly accuracy,sensitivity,false positive and false negative,to improve the brain tumor prediction system symmetrically.Therefore,this work proposed an Extended Deep Learning Algorithm(EDLA)to measure performance parameters such as accuracy,sensitivity,and false positive and false negative rates.In addition,these iterated measures were analyzed by comparing the EDLA method with the Convolutional Neural Network(CNN)way further using the SPSS tool,and respective graphical illustrations were shown.The results were that the mean performance measures for the proposed EDLA algorithm were calculated,and those measured were accuracy(97.665%),sensitivity(97.939%),false positive(3.012%),and false negative(3.182%)for ten iterations.Whereas in the case of the CNN,the algorithm means accuracy gained was 94.287%,mean sensitivity 95.612%,mean false positive 5.328%,and mean false negative 4.756%.These results show that the proposed EDLA method has outperformed existing algorithms,including CNN,and ensures symmetrically improved parameters.Thus EDLA algorithm introduces novelty concerning its performance and particular activation function.This proposed method will be utilized effectively in brain tumor detection in a precise and accurate manner.This algorithm would apply to brain tumor diagnosis and be involved in various medical diagnoses aftermodification.If the quantity of dataset records is enormous,then themethod’s computation power has to be updated.
基金Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2024R 343)PrincessNourah bint Abdulrahman University,Riyadh,Saudi ArabiaDeanship of Scientific Research at Northern Border University,Arar,Kingdom of Saudi Arabia,for funding this researchwork through the project number“NBU-FFR-2024-1092-02”.
文摘Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection.
基金supported by the National Natural Science Foundation of China(Nos.61974164,62074166,62004219,62004220,and 62104256).
文摘Artificial neural networks(ANNs)have led to landmark changes in many fields,but they still differ significantly fromthemechanisms of real biological neural networks and face problems such as high computing costs,excessive computing power,and so on.Spiking neural networks(SNNs)provide a new approach combined with brain-like science to improve the computational energy efficiency,computational architecture,and biological credibility of current deep learning applications.In the early stage of development,its poor performance hindered the application of SNNs in real-world scenarios.In recent years,SNNs have made great progress in computational performance and practicability compared with the earlier research results,and are continuously producing significant results.Although there are already many pieces of literature on SNNs,there is still a lack of comprehensive review on SNNs from the perspective of improving performance and practicality as well as incorporating the latest research results.Starting from this issue,this paper elaborates on SNNs along the complete usage process of SNNs including network construction,data processing,model training,development,and deployment,aiming to provide more comprehensive and practical guidance to promote the development of SNNs.Therefore,the connotation and development status of SNNcomputing is reviewed systematically and comprehensively from four aspects:composition structure,data set,learning algorithm,software/hardware development platform.Then the development characteristics of SNNs in intelligent computing are summarized,the current challenges of SNNs are discussed and the future development directions are also prospected.Our research shows that in the fields of machine learning and intelligent computing,SNNs have comparable network scale and performance to ANNs and the ability to challenge large datasets and a variety of tasks.The advantages of SNNs over ANNs in terms of energy efficiency and spatial-temporal data processing have been more fully exploited.And the development of programming and deployment tools has lowered the threshold for the use of SNNs.SNNs show a broad development prospect for brain-like computing.
文摘With the rapid development of sports,the number of sports images has increased dramatically.Intelligent and automatic processing and analysis of moving images are significant,which can not only facilitate users to quickly search and access moving images but also facilitate staff to store and manage moving image data and contribute to the intellectual development of the sports industry.In this paper,a method of table tennis identification and positioning based on a convolutional neural network is proposed,which solves the problem that the identification and positioning method based on color features and contour features is not adaptable in various environments.At the same time,the learning methods and techniques of table tennis detection,positioning,and trajectory prediction are studied.A deep learning framework for recognition learning of rotating flying table tennis is put forward.The mechanism and methods of positioning,trajectory prediction,and intelligent automatic processing of moving images are studied,and the self-built data sets are trained and verified.
基金Supported by the National Natural Science Foundation of China (60904018, 61203040)the Natural Science Foundation of Fujian Province of China (2009J05147, 2011J01352)+1 种基金the Foundation for Distinguished Young Scholars of Higher Education of Fujian Province of China (JA10004)the Science Research Foundation of Huaqiao University (09BS617)
文摘For accelerating the supervised learning by the SpikeProp algorithm with the temporal coding paradigm in spiking neural networks (SNNs), three learning rate adaptation methods (heuristic rule, delta-delta rule, and delta-bar-delta rule), which are used to speed up training in artificial neural networks, are used to develop the training algorithms for feedforward SNN. The performance of these algorithms is investigated by four experiments: classical XOR (exclusive or) problem, Iris dataset, fault diagnosis in the Tennessee Eastman process, and Poisson trains of discrete spikes. The results demonstrate that all the three learning rate adaptation methods are able to speed up convergence of SNN compared with the original SpikeProp algorithm. Furthermore, if the adaptive learning rate is used in combination with the momentum term, the two modifications will balance each other in a beneficial way to accomplish rapid and steady convergence. In the three learning rate adaptation methods, delta-bar-delta rule performs the best. The delta-bar-delta method with momentum has the fastest convergence rate, the greatest stability of training process, and the maximum accuracy of network learning. The proposed algorithms in this paper are simple and efficient, and consequently valuable for practical applications of SNN.
文摘Convolutional Neural Networks(CNNs)models succeed in vast domains.CNNs are available in a variety of topologies and sizes.The challenge in this area is to develop the optimal CNN architecture for a particular issue in order to achieve high results by using minimal computational resources to train the architecture.Our proposed framework to automated design is aimed at resolving this problem.The proposed framework is focused on a genetic algorithm that develops a population of CNN models in order to find the architecture that is the best fit.In comparison to the co-authored work,our proposed framework is concerned with creating lightweight architectures with a limited number of parameters while retaining a high degree of validity accuracy utilizing an ensemble learning technique.This architecture is intended to operate on low-resource machines,rendering it ideal for implementation in a number of environments.Four common benchmark image datasets are used to test the proposed framework,and it is compared to peer competitors’work utilizing a range of parameters,including accuracy,the number of model parameters used,the number of GPUs used,and the number of GPU days needed to complete the method.Our experimental findings demonstrated a significant advantage in terms of GPU days,accuracy,and the number of parameters in the discovered model.
文摘Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks.
文摘The existing strategy for evaluating the damage condition of structures mostly focuses on feedback supplied by traditional visualmethods,which may result in an unreliable damage characterization due to inspector subjectivity or insufficient level of expertise.As a result,a robust,reliable,and repeatable method of damage identification is required.Ensemble learning algorithms for identifying structural damage are evaluated in this article,which use deep convolutional neural networks,including simple averaging,integrated stacking,separate stacking,and hybridweighted averaging ensemble and differential evolution(WAE-DE)ensemblemodels.Damage identification is carried out on three types of damage.The proposed algorithms are used to analyze the damage of 4585 structural images.The effectiveness of the ensemble learning techniques is evaluated using the confusion matrix.For the testing dataset,the confusion matrix achieved an accuracy of 94 percent and a minimum recall of 92 percent for the best model(WAE-DE)in distinguishing damage types as flexural,shear,combined,or undamaged.
文摘The Volterra feedforward neural network with nonlinear interconnections and related homotopy learning algorithm are proposed in the paper. It is shown that Volterra neural network and the homolopy learning algorithms are significant potentials in nonlinear approximation ability,convergent speeds and global optimization than the classical neural networks and the standard BP algorithm, and related computer simulations and theoretical analysis are given too.
文摘The fault diagnosis model for FMS based on multi layer feedforward neural networks was discussed An improved BP algorithm,the tactic of initial value selection based on genetic algorithm and the method of network structure optimization were presented for training this model ANN(artificial neural network)fault diagnosis model for the robot in FMS was made by the new algorithm The result is superior to the rtaditional algorithm
文摘The power transfer capability of the smart transmission gridconnected networks needs to be reduced by inter-area oscillations.Due to the fact that inter-area modes of oscillations detain and make instability of power transmission networks.This fact is more noticeable in smart grid-connected systems.The smart grid infrastructure has more renewable energy resources installed for its operation.To overcome this problem,a deep learning widearea controller is proposed for real-time parameter control and smart power grid resilience on oscillations inter-area modes.The proposed Deep Wide Area Controller(DWAC)uses the Deep Belief Network(DBN).The network weights are updated based on real-time data from Phasor measurement units.Resilience assessment based on failure probability,financial impact,and time-series data in grid failure management determine the norm H2.To demonstrate the effectiveness of the proposed framework,a time-domain simulation case study based on the IEEE-39 bus system was performed.For a one-channel attack on the test system,the resiliency index increased to 0.962,and inter-area dampingξwas reduced to 0.005.The obtained results validate the proposed deep learning algorithm’s efficiency on damping inter-area and local oscillation on the 2-channel attack as well.Results also offer robust management of power system resilience and timely control of the operating conditions.
文摘This paper presents a modified structure of a neural network with tunable activation function and provides a new learning algorithm for the neural network training. Simulation results of XOR problem, Feigenbaum function, and Henon map show that the new algorithm has better performance than BP (back propagation) algorithm in terms of shorter convergence time and higher convergence accuracy. Further modifications of the structure of the neural network with the faster learning algorithm demonstrate simpler structure with even faster convergence speed and better convergence accuracy.
基金Supported by the National High-Tech Research and Development Program of China (Grant No. 2006AA05A107)Special Fund of JiangsuProvince for Technology Transfer (Grant No. BA2007008)
文摘Based on detailed study on several kinds of fuzzy neural networks, we propose a novel compensationbased recurrent fuzzy neural network (CRFNN) by adding recurrent element and compensatory element to the conventional fuzzy neural network. Then, we propose a sequential learning method for the structure identification of the CRFNN in order to confirm the fuzzy rules and their correlative parameters effectively. Furthermore, we improve the BP algorithm based on the characteristics of the proposed CRFNN to train the network. By modeling the typical nonlinear systems, we draw the conclusion that the proposed CRFNN has excellent dynamic response and strong learning ability.
文摘This paper investigates exponential stability and trajectory bounds of motions of equilibria of a class of associative neural networks under structural variations as learning a new pattern. Some conditions for the possible maximum estimate of the domain of structural exponential stability are determined. The filtering ability of the associative neural networks contaminated by input noises is analyzed. Employing the obtained results as valuable guidelines, a systematic synthesis procedure for constructing a dynamical associative neural network that stores a given set of vectors as the stable equilibrium points as well as learns new patterns can be developed. Some new concepts defined here are expected to be the instruction for further studies of learning associative neural networks.
基金Supported by the National 863 CIMS Project Foundation(863-511-010)Tianjin Natural Science Foundation(983602011)Backbone Young Teacher Project Foundation of Ministry of Education
文摘This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.
文摘As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
基金the National Natural Science Foundation of China(No.61402280)
文摘An integrated fuzzy min-max neural network(IFMMNN) is developed to avoid the classification result influenced by the input sequence of training samples, and the learning algorithm can be used as pure clustering,pure classification, or a hybrid clustering classification. Three experiments are designed to realize the aim. The serial input of samples is changed to parallel input, and the fuzzy membership function is substituted by similarity matrix. The experimental results show its superiority in contrast with the original method proposed by Simpson.
文摘Soil swelling-related disaster is considered as one of the most devastating geo-hazards in modern history.Hence,proper determination of a soil’s ability to expand is very vital for achieving a secure and safe ground for infrastructures.Accordingly,this study has provided a novel and intelligent approach that enables an improved estimation of swelling by using kernelised machines(Bayesian linear regression(BLR)&bayes point machine(BPM)support vector machine(SVM)and deep-support vector machine(D-SVM));(multiple linear regressor(REG),logistic regressor(LR)and artificial neural network(ANN)),tree-based algorithms such as decision forest(RDF)&boosted trees(BDT).Also,and for the first time,meta-heuristic classifiers incorporating the techniques of voting(VE)and stacking(SE)were utilised.Different independent scenarios of explanatory features’combination that influence soil behaviour in swelling were investigated.Preliminary results indicated BLR as possessing the highest amount of deviation from the predictor variable(the actual swell-strain).REG and BLR performed slightly better than ANN while the meta-heuristic learners(VE and SE)produced the best overall performance(greatest R2 value of 0.94 and RMSE of 0.06%exhibited by VE).CEC,plasticity index and moisture content were the features considered to have the highest level of importance.Kernelized binary classifiers(SVM,D-SVM and BPM)gave better accuracy(average accuracy and recall rate of 0.93 and 0.60)compared to ANN,LR and RDF.Sensitivity-driven diagnostic test indicated that the meta-heuristic models’best performance occurred when ML training was conducted using k-fold validation technique.Finally,it is recommended that the concepts developed herein be deployed during the preliminary phases of a geotechnical or geological site characterisation by using the best performing meta-heuristic models via their background coding resource.
文摘Spam has turned into a big predicament these days,due to the increase in the number of spam emails,as the recipient regularly receives piles of emails.Not only is spam wasting users’time and bandwidth.In addition,it limits the storage space of the email box as well as the disk space.Thus,spam detection is a challenge for individuals and organizations alike.To advance spam email detection,this work proposes a new spam detection approach,using the grasshopper optimization algorithm(GOA)in training a multilayer perceptron(MLP)classifier for categorizing emails as ham and spam.Hence,MLP and GOA produce an artificial neural network(ANN)model,referred to(GOAMLP).Two corpora are applied Spam Base and UK-2011Web spam for this approach.Finally,the finding represents evidence that the proposed spam detection approach has achieved a better level in spam detection than the status of the art.