The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal ch...The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set).展开更多
Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. ...Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively.展开更多
基金Sponsored by the National High Technology Research Development Program of China(Grant No.2001AA413130).
文摘The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set).
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50305005)
文摘Aimed at the problem that the traditional ART-2 neural network can not recognize a gradually changing course, an eternal term memory (ETM) vector is introduced into ART-2 to simulate the function of human brain, i.e. the deep remembrance for the initial impression.. The eternal term memory vector is determined only by the initial vector that establishes category neuron node and is used to keep the remembrance for this vector for ever. Two times of vigilance algorithm are put forward, and the posterior input vector must first pass the first vigilance of this eternal term memory vector, only succeeded has it the qualification to begin the second vigilance of long term memory vector. The long term memory vector can be revised only when both of the vigilances are passed. Results of recognition examples show that the improved ART-2 overcomes the defect of traditional ART-2 and can recognize a gradually changing course effectively.
基金河北省自然科学基金(the Natural Science Foundation of Hebei Province of China under Grant No.A2006000941)河北省教育厅2006年科研计划(No.2006408)河北省科学技术研究与发展指导计划(No.072135142)。