Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at...Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.展开更多
Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough...Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough to rely on,vast quantities of relevant data have to be fed.In this study,we analysed the scope of artificial neural networks in geothermal reservoir architecture.In particular,we attempted to solve joint inversion problem through Feedforward Neural Network(FNN)technique.In order to identify geothermal sweet spots in the subsurface,an extensive geophysical studies were conducted in Gandhar area of Gujarat,India.The data were acquired along six profile lines for gravity,magnetics and magnetotellurics.Initially low velocity zone was identified using refraction seismic technique in order to set a common datum level for other potential data.The depth of low velocity zone in Gandhar was identified at 11 m.The FNN backpropagation method was applied to gain the global minima of the data space and model space as desired.The input dataset fed to the inversion algorithm in the form of gravity,magnetic susceptibility and resistivity helped to predict the suitable model after network training in multiple steps.The joint inversion of data is conducive to understanding the subsurface geological and lithological features along with probable geothermal sweet spots.The results of this study show the geothermal sweet spots at depth ranging from 200 m to 300 m.The results from our study can be used for targeted zones for geothermal water exploitation.展开更多
This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that th...This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.展开更多
As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes...As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.展开更多
By means of an arificial neural network (ANN) model, higher measurement accuracy of integer harmonics can be obtained. Combining the windowed fast Fourier transform (FFT) algorithm with the improved ANN model, we pres...By means of an arificial neural network (ANN) model, higher measurement accuracy of integer harmonics can be obtained. Combining the windowed fast Fourier transform (FFT) algorithm with the improved ANN model, we present a new precise algorithm for non-integer harmonics analysis. According to the result obtained from the Hanning-windowed FFT algorithm, we choose the initial values of orders of harmonics for the neural network. Through such processing, the time of iterations is shortened and the convergence rate of neural network is raised thereby. The simulation results show that close non-integer harmonics can be separated from a signal with higher accuracy and better real-time by using the algorithm presented in the paper. Key words fast Fourier transform (FFT) - artificial neural network (ANN) - Hanning-window - harmonics analysis CLC number TM 935 Foundation item: Supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of China (2001-182) and the Science Foundation of Naval University of Engineering(HGDJJ03001).Biography: WANG Gong-bao (1962-), male, Professor, research direction: artificial neural network, wavelet analysis and their applications to signal processing in electric power systems.展开更多
The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To a...The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.展开更多
Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ri...Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.展开更多
In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of...In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.展开更多
A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation func...A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.展开更多
Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods...Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods to solve this kind of inverse problem has all kinds of shortcomings, BPNN (Back Propagation Neural Networks) method can be used to solve this typical inverse problem fast enough for real time measurement. In the traditional BPNN method, gradient descent search method is performed for error propagation. In this paper the authors propose a new algorithm that Newton method is performed for error propagation. For the cost function is highly nonconvex in the magnetic measurement problem, the new kind of BPNN can get convergent results quickly and precisely. A simulation result for this method is also presented.展开更多
To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory,...To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.展开更多
A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunol...A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunology combined with simulated annealing algorithm is used to specify the initial weight vectors, therefore improves the probabiligy of training algorithm to converge to global optima. The applications of the neural network in the modulation style recognition of analog modulated rader signals demonstrate the good performance of the network.展开更多
As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. A...As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.展开更多
A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accur...A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accuracy can be generated. Stereo-pair images obtained from two cameras can be used to compute 3D world coordinates of a point using traditional active triangulation approach, yet the camera calibration is crucial. Neural network is a well-known approach to approximate a nonlinear system without an explicit physical model, in this work it is used to train the stereo vision application system to calculating 3D world coordinates such that the camera calibration can be bypassed. The training set for neural network consists of a variety of stereo-pair images and the corresponding 3D world coordinates. The picture elements correspondence problem is solved by using projected color-coded fringes with different orientations. Color imbalance is completely eliminated by the new color-coded method. Once the high accuracy correspondence of 2D images with 3D points is acquired, high precision 3D points cloud can be recognized by the well trained net. The obvious advantage of this approach is that high spatial resolution can be obtained by the phase-shifting technique and high accuracy 3D object point coordinates are achieved by the well trained net which is independent of the camera model works for any type of camera. Some experiments verified the performance of the method.展开更多
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu...General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.展开更多
Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, a...Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results.展开更多
Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,th...Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.展开更多
The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response syst...The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.展开更多
Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the impl...Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided.展开更多
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ...A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.展开更多
基金the National Natural Science Foundation of China under Grant(42274119)the Liaoning Revitalization Talents Program under Grant(XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘Global navigation satellite system-reflection(GNSS-R)sea surface altimetry based on satellite constellation platforms has become a new research direction and inevitable trend,which can meet the altimetric precision at the global scale required for underwater navigation.At present,there are still research gaps for GNSS-R altimetry under this mode,and its altimetric capability cannot be specifically assessed.Therefore,GNSS-R satellite constellations that meet the global altimetry needs to be designed.Meanwhile,the matching precision prediction model needs to be established to quantitatively predict the GNSS-R constellation altimetric capability.Firstly,the GNSS-R constellations altimetric precision under different configuration parameters is calculated,and the mechanism of the influence of orbital altitude,orbital inclination,number of satellites and simulation period on the precision is analyzed,and a new multilayer feedforward neural network weighted joint prediction model is established.Secondly,the fit of the prediction model is verified and the performance capability of the model is tested by calculating the R2 value of the model as 0.9972 and the root mean square error(RMSE)as 0.0022,which indicates that the prediction capability of the model is excellent.Finally,using the novel multilayer feedforward neural network weighted joint prediction model,and considering the research results and realistic costs,it is proposed that when the constellation is set to an orbital altitude of 500 km,orbital inclination of 75and the number of satellites is 6,the altimetry precision can reach 0.0732 m within one year simulation period,which can meet the requirements of underwater navigation precision,and thus can provide a reference basis for subsequent research on spaceborne GNSS-R sea surface altimetry.
文摘Artificial Neural Networks(ANNs)are used in numerous engineering and scientific disciplines as an automated approach to resolve a number of problems.However,to build an artificial neural network that is prudent enough to rely on,vast quantities of relevant data have to be fed.In this study,we analysed the scope of artificial neural networks in geothermal reservoir architecture.In particular,we attempted to solve joint inversion problem through Feedforward Neural Network(FNN)technique.In order to identify geothermal sweet spots in the subsurface,an extensive geophysical studies were conducted in Gandhar area of Gujarat,India.The data were acquired along six profile lines for gravity,magnetics and magnetotellurics.Initially low velocity zone was identified using refraction seismic technique in order to set a common datum level for other potential data.The depth of low velocity zone in Gandhar was identified at 11 m.The FNN backpropagation method was applied to gain the global minima of the data space and model space as desired.The input dataset fed to the inversion algorithm in the form of gravity,magnetic susceptibility and resistivity helped to predict the suitable model after network training in multiple steps.The joint inversion of data is conducive to understanding the subsurface geological and lithological features along with probable geothermal sweet spots.The results of this study show the geothermal sweet spots at depth ranging from 200 m to 300 m.The results from our study can be used for targeted zones for geothermal water exploitation.
文摘This paper studies the generalization capability of feedforward neural networks (FNN).The mechanism of FNNs for classification is investigated from the geometric and probabilistic viewpoints. It is pointed out that the outputs of the output layer in the FNNs for classification correspond to the estimates of posteriori probability of the input pattern samples with desired outputs 1 or 0. The theorem for the generalized kernel function in the radial basis function networks (RBFN) is given. For an 2-layer perceptron network (2-LPN). an idea of using extended samples to improve generalization capability is proposed. Finally. the experimental results of radar target classification are given to verify the generaliztion capability of the RBFNs.
基金National Natural Science Foundation of China!(No.6 97740 33)
文摘As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.
文摘By means of an arificial neural network (ANN) model, higher measurement accuracy of integer harmonics can be obtained. Combining the windowed fast Fourier transform (FFT) algorithm with the improved ANN model, we present a new precise algorithm for non-integer harmonics analysis. According to the result obtained from the Hanning-windowed FFT algorithm, we choose the initial values of orders of harmonics for the neural network. Through such processing, the time of iterations is shortened and the convergence rate of neural network is raised thereby. The simulation results show that close non-integer harmonics can be separated from a signal with higher accuracy and better real-time by using the algorithm presented in the paper. Key words fast Fourier transform (FFT) - artificial neural network (ANN) - Hanning-window - harmonics analysis CLC number TM 935 Foundation item: Supported by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of China (2001-182) and the Science Foundation of Naval University of Engineering(HGDJJ03001).Biography: WANG Gong-bao (1962-), male, Professor, research direction: artificial neural network, wavelet analysis and their applications to signal processing in electric power systems.
基金This work was funded by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07201003)the National Natural Science Foundation of China(51961125101)the Science and Technology Project of Zhejiang Province(2018C03003).
文摘The problem of effluent total nitrogen(TN)at most of the wastewater treatment plants(WWTPs)in China is important for meeting the related water quality standards,even under the condition of high energy consumption.To achieve better prediction and control of effluent TN concentration,an efficient prediction model,based on controllable operation parameters,was constructed in a sequencing batch reactor process.Compared with previous models,this model has two main characteristics:①Superficial gas velocity and anoxic time are controllable operation parameters and are selected as the main input parameters instead of dissolved oxygen to improve the model controllability,and②the model prediction accuracy is improved on the basis of a feedforward neural network(FFNN)with algorithm optimization.The results demonstrated that the FFNN model was efficiently optimized by scaled conjugate gradient,and the performance was excellent compared with other models in terms of the correlation coefficient(R).The optimized FFNN model could provide an accurate prediction of effluent TN based on influent water parameters and key control parameters.This study revealed the possible application of the optimized FFNN model for the efficient removal of pollutants and lower energy consumption at most of the WWTPs.
基金Project(51205299)supported by the National Natural Science Foundation of ChinaProject(2015M582643)supported by the China Postdoctoral Science Foundation+2 种基金Project(2014BAA008)supported by the Science and Technology Support Program of Hubei Province,ChinaProject(2014-IV-144)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2012AAA07-01)supported by the Major Science and Technology Achievements Transformation&Industrialization Program of Hubei Province,China
文摘Vertical hot ring rolling(VHRR) process has the characteristics of nonlinearity,time-variation and being susceptible to disturbance.Furthermore,the ring's growth is quite fast within a short time,and the rolled ring's position is asymmetrical.All of these cause that the ring's dimensions cannot be measured directly.Through analyzing the relationships among the dimensions of ring blanks,the positions of rolls and the ring's inner and outer diameter,the soft measurement model of ring's dimensions is established based on the radial basis function neural network(RBFNN).A mass of data samples are obtained from VHRR finite element(FE) simulations to train and test the soft measurement NN model,and the model's structure parameters are deduced and optimized by genetic algorithm(GA).Finally,the soft measurement system of ring's dimensions is established and validated by the VHRR experiments.The ring's dimensions were measured artificially and calculated by the soft measurement NN model.The results show that the calculation values of GA-RBFNN model are close to the artificial measurement data.In addition,the calculation accuracy of GA-RBFNN model is higher than that of RBFNN model.The research results suggest that the soft measurement NN model has high precision and flexibility.The research can provide practical methods and theoretical guidance for the accurate measurement of VHRR process.
基金This work was supported by the Key Research and Development Project of Shaanxi Province under Grant no.2019ZDLGY07-07.
文摘In modern wireless communication systems,the accurate acquisition of channel state information(CSI)is critical to the performance of beamforming,non-orthogonal multiple access(NOMA),etc.However,with the application of massive MIMO in 5G,the number of antennas increases by hundreds or even thousands times,which leads to excessive feedback overhead and poses a huge challenge to the conventional channel state information feedback scheme.In this paper,by using deep learning technology,we develop a system framework for CSI feedback based on fully connected feedforward neural networks(FCFNN),named CF-FCFNN.Through learning the training set composed of CSI,CF-FCFNN is able to recover the original CSI from the compressed CSI more accurately compared with the existing method based on deep learning without increasing the algorithm complexity.
基金Supported by the National Natural Science Foundatipn of China (No. 59977019).
文摘A comparison of construction forms and base functions is made between feedforward neural network and wavelet network. The relations between them are studied from the constructions of wavelet functions or dilation functions in wavelet network by different activation functions in feedforward neural network. It is concluded that some wavelet function is equal to the linear combination of several neurons in feedforward neural network.
文摘Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods to solve this kind of inverse problem has all kinds of shortcomings, BPNN (Back Propagation Neural Networks) method can be used to solve this typical inverse problem fast enough for real time measurement. In the traditional BPNN method, gradient descent search method is performed for error propagation. In this paper the authors propose a new algorithm that Newton method is performed for error propagation. For the cost function is highly nonconvex in the magnetic measurement problem, the new kind of BPNN can get convergent results quickly and precisely. A simulation result for this method is also presented.
文摘To eliminate harmonic pollution incurred from the static synchronous compensator(STATCOM), a method of applying artificial neural network is presented. When PWM wave is formed based on the harmonic suppression theory, a concave is set on certain angle of the square wave to suppress unnecessary harmonics, by timely and on-line determining the chopping angle corresponding to respective harmonics through artificial neural network, i.e. by setting the position of concave to eliminate corresponding harmonics, the harmonic component on output voltage of the inverter can be improved. To conclude through computer simulation test, the perfect control effect has been proved.
文摘A hybrid algorithm to design the multi layer feedforward neural network was proposed. Evolutionary programming is used to design the network that makes the training process tending to global optima. Artificial immunology combined with simulated annealing algorithm is used to specify the initial weight vectors, therefore improves the probabiligy of training algorithm to converge to global optima. The applications of the neural network in the modulation style recognition of analog modulated rader signals demonstrate the good performance of the network.
文摘As a most popular learning algorithm for the feedforward neural networks, the classic BP algorithm has its many shortages. To overcome some of the shortages, a modified learning algorithm is proposed in the article. And the simulation result illustrate the modified algorithm is more effective and practicable.
基金Supported by the Eleventh Five-Year Pre-research Project of China.
文摘A new 3D surface contouring and ranging system based on digital fringe projection and phase shifting technique is presented. Using the phase-shift technique, points cloud with high spatial resolution and limited accuracy can be generated. Stereo-pair images obtained from two cameras can be used to compute 3D world coordinates of a point using traditional active triangulation approach, yet the camera calibration is crucial. Neural network is a well-known approach to approximate a nonlinear system without an explicit physical model, in this work it is used to train the stereo vision application system to calculating 3D world coordinates such that the camera calibration can be bypassed. The training set for neural network consists of a variety of stereo-pair images and the corresponding 3D world coordinates. The picture elements correspondence problem is solved by using projected color-coded fringes with different orientations. Color imbalance is completely eliminated by the new color-coded method. Once the high accuracy correspondence of 2D images with 3D points is acquired, high precision 3D points cloud can be recognized by the well trained net. The obvious advantage of this approach is that high spatial resolution can be obtained by the phase-shifting technique and high accuracy 3D object point coordinates are achieved by the well trained net which is independent of the camera model works for any type of camera. Some experiments verified the performance of the method.
基金Tianjin Natural Science Foundation !983602011National 863/CIMS Research Foundation !863-511-945-010
文摘General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme.
基金Partly supported by the National Natural Science Foundation of China,and the Basic Research Program of the Committee of ScienceTechnology and Industry of National Defense of China.
文摘Online gradient algorithm has been widely used as a learning algorithm for feedforward neural network training. In this paper, we prove a weak convergence theorem of an online gradient algorithm with a penalty term, assuming that the training examples are input in a stochastic way. The monotonicity of the error function in the iteration and the boundedness of the weight are both guaranteed. We also present a numerical experiment to support our results.
基金supported by the Natural Science Foundation of Jilin Province (No. 20220101017JC)the National Natural Science Foundation of China (Nos. 11675063, 11875070, and 11935001)+1 种基金Key Laboratory of Nuclear Data foundation (JCKY2020201C157)the Anhui Project (Z010118169)
文摘Nuclear charge density distribution plays an important role in both nuclear and atomic physics,for which the two-parameter Fermi(2pF)model has been widely applied as one of the most frequently used models.Currently,the feedforward neural network has been employed to study the available 2pF model parameters for 86 nuclei,and the accuracy and precision of the parameter-learning effect are improved by introducing A^(1∕3)into the input parameter of the neural network.Furthermore,the average result of multiple predictions is more reliable than the best result of a single prediction and there is no significant difference between the average result of the density and parameter values for the average charge density distribution.In addition,the 2pF parameters of 284(near)stable nuclei are predicted in this study,which provides a reference for the experiment.
基金This project was supported in part by the Science Foundation of Shanxi Province (2003F028)China Postdoctoral Science Foundation (20060390318).
文摘The Radial Basis Functions Neural Network (RBFNN) is used to establish the model of a response system through the input and output data of the system. The synchronization between a drive system and the response system can be implemented by employing the RBFNN model and state feedback control. In this case, the exact mathematical model, which is the precondition for the conventional method, is unnecessary for implementing synchronization. The effect of the model error is investigated and a corresponding theorem is developed. The effect of the parameter perturbations and the measurement noise is investigated through simulations. The simulation results under different conditions show the effectiveness of the method.
文摘Online gradient methods are widely used for training the weight of neural networks and for other engineering computations. In certain cases, the resulting weight may become very large, causing difficulties in the implementation of the network by electronic circuits. In this paper we introduce a punishing term into the error function of the training procedure to prevent this situation. The corresponding convergence of the iterative training procedure and the boundedness of the weight sequence are proved. A supporting numerical example is also provided.
基金This project was supported by the National Natural Science Foundation (No. 69875010).
文摘A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity.