期刊文献+
共找到1,932篇文章
< 1 2 97 >
每页显示 20 50 100
Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks 被引量:2
1
作者 何超 徐立新 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期300-305,共6页
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s... Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering. 展开更多
关键词 servo system backlash nonlinear characteristics limit cycle backpropagation neural networks(BPNN) compensation methods
下载PDF
DECOUPLING CONTROL OF TWO MOTORS SYSTEM BASED ON NEURAL NETWORK INVERSE SYSTEM 被引量:1
2
作者 WangDeming JuPing LiuGuohai 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第4期602-605,共4页
In accordance with the characteristics of two motors system, the unitedmathematic model of two-motors inverter system with v/f variable frequency speed-regulating isgiven. Two-motor inverter system can be decoupled by... In accordance with the characteristics of two motors system, the unitedmathematic model of two-motors inverter system with v/f variable frequency speed-regulating isgiven. Two-motor inverter system can be decoupled by the neural network invert system, and changedinto a sub-system of speed and a sub-system of tension. Multiple controllers are designed, and goodresults are obtained. Tie system has good static and dynamic performances and high anti-disturbanceof load. 展开更多
关键词 Decoupling control Two-motor system Inverter neural network inverse system
下载PDF
Neural-network adaptive controller for nonlinear systems and its application in pneumatic servo systems 被引量:2
3
作者 Lu LU Fagui LIU Weixiang SHI 《控制理论与应用(英文版)》 EI 2008年第1期97-103,共7页
In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive... In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller. 展开更多
关键词 Nonlinear control CONVERGENCE Adaptive control H-infinity control neural networks Pneumatic servo system
下载PDF
APPLICATION OF NEURAL NETWORK INVERSE CONTROL SYSTEM IN TURBO DECODING 被引量:3
4
作者 Dong Zhenghong Wang Yuanqin 《Journal of Electronics(China)》 2007年第1期27-31,共5页
Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is pro... Adaptive inverse control system can improve the performance of turbo decoding,and modeling turbo decoder is one of the most important technologies. A neural network model for the inverse model of turbo decoding is proposed in this paper. Compared with linear filter with its revi-sion,the general relationship between the input and output of the inverse model of turbo decoding system can be established exactly by Nonlinear Auto-Regressive eXogeneous input (NARX) filter. Combined with linear inverse system,it has simpler structure and costs less computation,thus can satisfy the demand of real-time turbo decoding. Simulation results show that neural network in-verse control system can improve the performance of turbo decoding further than other linear con-trol system. 展开更多
关键词 neural network Adaptive inverse control Decoding model Turbo codes
下载PDF
Zero phase error control based on neural compensation for flight simulator servo system
5
作者 Liu Jinkun He Peng Er Lianjie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期793-797,共5页
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ... Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach. 展开更多
关键词 zero phase error servo system neural network robust control flight simulator.
下载PDF
Incorporating Lasso Regression to Physics-Informed Neural Network for Inverse PDE Problem
6
作者 Meng Ma Liu Fu +1 位作者 Xu Guo Zhi Zhai 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期385-399,共15页
Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time... Partial Differential Equation(PDE)is among the most fundamental tools employed to model dynamic systems.Existing PDE modeling methods are typically derived from established knowledge and known phenomena,which are time-consuming and labor-intensive.Recently,discovering governing PDEs from collected actual data via Physics Informed Neural Networks(PINNs)provides a more efficient way to analyze fresh dynamic systems and establish PEDmodels.This study proposes Sequentially Threshold Least Squares-Lasso(STLasso),a module constructed by incorporating Lasso regression into the Sequentially Threshold Least Squares(STLS)algorithm,which can complete sparse regression of PDE coefficients with the constraints of l0 norm.It further introduces PINN-STLasso,a physics informed neural network combined with Lasso sparse regression,able to find underlying PDEs from data with reduced data requirements and better interpretability.In addition,this research conducts experiments on canonical inverse PDE problems and compares the results to several recent methods.The results demonstrated that the proposed PINN-STLasso outperforms other methods,achieving lower error rates even with less data. 展开更多
关键词 Physics-informed neural network inverse partial differential equation Lasso regression scientific machine learning
下载PDF
Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks 被引量:1
7
作者 张燕 梁秀霞 +2 位作者 杨鹏 陈增强 袁著祉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期454-459,共6页
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no... An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness. 展开更多
关键词 adaptive inverse control compound neural network process control reaction engineering multi-input multi-output nonlinear system
下载PDF
ADAPTIVE FLIGHT CONTROL SYSTEM OF ARMED HELICOPTER USING WAVELET NEURAL NETWORK METHOD 被引量:1
8
作者 ZHURong-gang JIANGChangsheng FENGBin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第2期157-162,共6页
A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic invers... A discussion is devoted to the design of an adaptive flight control system of the armed helicopter using wavelet neural network method. Firstly, the control loop of the attitude angle is designed with a dynamic inversion scheme in a quick loop and a slow loop. respectively. Then, in order to compensate the error caused by dynamic inversion, the adaptive flight control system of the armed helicopter using wavelet neural network method is put forward, so the BP wavelet neural network and the Lyapunov stable wavelet neural network are used to design the helicopter flight control system. Finally, the typical maneuver flight is simulated to demonstrate its validity and effectiveness. Result proves that the wavelet neural network has an engineering practical value and the effect of WNN is good. 展开更多
关键词 adaptive control helicopter flight control system dynamic inversion wavelet neural network maneuver flight
下载PDF
Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control 被引量:11
9
作者 张友旺 桂卫华 《Journal of Central South University of Technology》 EI 2008年第2期256-263,共8页
Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employe... Based on consideration of the differential relations between the immeasurable variables and measurable variables in electro-hydraulic servo system,adaptive dynamic recurrent fuzzy neural networks(ADRFNNs) were employed to identify the primary uncertainty and the mathematic model of the system was turned into an equivalent linear model with terms of secondary uncertainty.At the same time,gain adaptive sliding mode variable structure control(GASMVSC) was employed to synthesize the control effort.The results show that the unrealization problem caused by some system's immeasurable state variables in traditional fuzzy neural networks(TFNN) taking all state variables as its inputs is overcome.On the other hand,the identification by the ADRFNNs online with high accuracy and the adaptive function of the correction term's gain in the GASMVSC make the system possess strong robustness and improved steady accuracy,and the chattering phenomenon of the control effort is also suppressed effectively. 展开更多
关键词 electro-hydraulic servo system adaptive dynamic recurrent fuzzy neural network(ADRFNN) gain adaptive slidingmode variable structure control(GASMVSC) secondary uncertainty
下载PDF
Neural Network inverse Adaptive Controller Based on Davidon Least Square 被引量:2
10
作者 Chen, Zengqiang Lu, Zhao Yuan, Zhuzhi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期47-52,共6页
General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neu... General neural network inverse adaptive controller has two flaws: the first is the slow convergence speed; the second is the invalidation to the non-minimum phase system. These defects limit the scope in which the neural network inverse adaptive controller is used. We employ Davidon least squares in training the multi-layer feedforward neural network used in approximating the inverse model of plant to expedite the convergence, and then through constructing the pseudo-plant, a neural network inverse adaptive controller is put forward which is still effective to the nonlinear non-minimum phase system. The simulation results show the validity of this scheme. 展开更多
关键词 ALGORITHMS Backpropagation Convergence of numerical methods Feedforward neural networks inverse problems Least squares approximations Mathematical models Multilayer neural networks
下载PDF
Application of intelligent control theory in AC servo system 被引量:1
11
作者 WANG Zhiliang XIE Lun IJ Chongjian (Information Engineering School, University of Science and Technology Beijing, Beijing 100083, China) (Automation Research institute of Metallurgical Industry, Beijing 100071, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第3期43-45,共3页
An AC servo system based on neuron control theory is presented. Experimental results show that the neuralcontrol mode doesn't need the Precise model of the system, therefore, it has many advantages, such as simple... An AC servo system based on neuron control theory is presented. Experimental results show that the neuralcontrol mode doesn't need the Precise model of the system, therefore, it has many advantages, such as simple designand high response performance. The simulation research of the AC servo system which is non-linear, time-varied.based on neuro-fuzzy controller is done. The results of the simulation show that the performances of the system areconsiderably improved and it is one of the novel pathways to realize intelligent control of servo system. 展开更多
关键词 servo system fuzzy control neural networks neuro-fuzzy networks
下载PDF
INVESTIGATION ON FAULT DETECTION & DIAGNOSIS FOR POSITION SERVO SYSTEM OF AIRCRAFT ACTUATOR
12
作者 Zhang Jianhua Li Yunhua +1 位作者 Wang Zhanlin Qiu Lihua(Faculty 303, Beijing University of Aeronautics and Astronautics, Beijing, China, 100083) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1997年第1期68-74,共7页
A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are e... A new approach to fault dignosis dealing with nonlinear system Hopfieldneural networks (HNN) is presented. The model parameters of the nonlinear systemtreated as functions of measured operating points and faults are estimated by HNN. Boththe nominal model of the healthy system and HNN training models corresponding to everyoperating point are recognized. In addition, the anticipated fault models corresponding toevery kind of fault and every operating point are obtaind in advance. The real systemmodel parameters of the system estimated by generalization process of HNN are matchedwith the nominal models of the healthy system and anticipated fault models. Consequent-ly, the final result of fault detection and diagnosis is acquired. The approach to fault diag-nosis is used in an aircraft actuating poisition servo system and the simulation resu1t is re-ported. 展开更多
关键词 FAULTS detection DIAGNOSIS nonlinear systems Hopfield neural networks(HNN) aircraft's actuating position servo systems
下载PDF
Design of Robotic Visual Servo Control Based on Neural Network and Genetic Algorithm 被引量:9
13
作者 Hong-Bin Wang Mian Liu 《International Journal of Automation and computing》 EI 2012年第1期24-29,共6页
A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without req... A new visual servo control scheme for a robotic manipulator is presented in this paper, where a back propagation (BP) neural network is used to make a direct transition from image feature to joint angles without requiring robot kinematics and camera calibration. To speed up the convergence and avoid local minimum of the neural network, this paper uses a genetic algorithm to find the optimal initial weights and thresholds and then uses the BP Mgorithm to train the neural network according to the data given. The proposed method can effectively combine the good global searching ability of genetic algorithms with the accurate local searching feature of BP neural network. The Simulink model for PUMA560 robot visual servo system based on the improved BP neural network is built with the Robotics Toolbox of Matlab. The simulation results indicate that the proposed method can accelerate convergence of the image errors and provide a simple and effective way of robot control. 展开更多
关键词 Visual servo image Jacobian back propagation (BP) neural network genetic algorithm robot control
下载PDF
A transfer learning enhanced physics-informed neural network for parameter identification in soft materials
14
作者 Jing’ang ZHU Yiheng XUE Zishun LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第10期1685-1704,共20页
Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorpor... Soft materials,with the sensitivity to various external stimuli,exhibit high flexibility and stretchability.Accurate prediction of their mechanical behaviors requires advanced hyperelastic constitutive models incorporating multiple parameters.However,identifying multiple parameters under complex deformations remains a challenge,especially with limited observed data.In this study,we develop a physics-informed neural network(PINN)framework to identify material parameters and predict mechanical fields,focusing on compressible Neo-Hookean materials and hydrogels.To improve accuracy,we utilize scaling techniques to normalize network outputs and material parameters.This framework effectively solves forward and inverse problems,extrapolating continuous mechanical fields from sparse boundary data and identifying unknown mechanical properties.We explore different approaches for imposing boundary conditions(BCs)to assess their impacts on accuracy.To enhance efficiency and generalization,we propose a transfer learning enhanced PINN(TL-PINN),allowing pre-trained networks to quickly adapt to new scenarios.The TL-PINN significantly reduces computational costs while maintaining accuracy.This work holds promise in addressing practical challenges in soft material science,and provides insights into soft material mechanics with state-of-the-art experimental methods. 展开更多
关键词 soft material parameter identification physics-informed neural network(PINN) transfer learning inverse problem
下载PDF
Artificial neural network based inverse design method for circular sliding slopes 被引量:4
15
作者 丁德馨 张志军 《Journal of Central South University of Technology》 EI 2004年第1期89-92,共4页
Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inv... Current design method for circular sliding slopes is not so reasonable that it often results in slope (sliding.) As a result, artificial neural network (ANN) is used to establish an artificial neural network based inverse design method for circular sliding slopes. A sample set containing 21 successful circular sliding slopes excavated in the past is used to train the network. A test sample of 3 successful circular sliding slopes excavated in the past is used to test the trained network. The test results show that the ANN based inverse design method is valid and can be applied to the design of circular sliding slopes. 展开更多
关键词 circular sliding slopes artificial neural network inverse design
下载PDF
Self-correcting wavelet neural network control of continuous rotary electro-hydraulic servo motor 被引量:2
16
作者 Wang Xiaojing Li Chunhui Peng Yiwen 《High Technology Letters》 EI CAS 2021年第1期26-37,共12页
In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the... In allusion to the problem of friction,leakage,vibration and noise existing in continuous rotary motor electro-hydraulic servo system,highly nonlinearity and uncertainties affecting the system performance,based on the transfer function of electro-hydraulic servo system,a kind of Pol-Ind friction model is proposed.The parameters of Pol-Ind friction model are identified and the accurate mathematical model of friction torque is obtained by experiment.The self-correcting wavelet neural network(WNN)controller is proposed,and Adam optimization algorithm is used to perform gradient optimization on scale factor and displacement factor in wavelet basis function,so as to improve the speed and precision of parameter optimization.Through comparative simulation analysis,it is clearly that the self-correcting WNN controller can effectively improve the frequency response and tracking accuracy of continuous rotary motor electro-hydraulic servo system. 展开更多
关键词 continuous rotary electro-hydraulic servo motor Pol-Ind friction model self correcting wavelet neural network(WNN) Adam optimization algorithm
下载PDF
CONTROL SCHEMES FOR CMAC NEURAL NETWORK-BASED VISUAL SERVOING 被引量:1
17
作者 Wang HuamingXi WenmingZhu JianyingDepartment of Mechanical andElectrical Engineering,Nanjing University of Aeronauticsand Astronautics,Nanjing 210016, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期256-259,共4页
In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of im... In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2. 展开更多
关键词 CMAC neural network Control scheme Visual servoing
下载PDF
The adaptive control using BP neural networks for a nonlinear servo-motor 被引量:2
18
作者 Xinliang ZHANG Yonghong TAN 《控制理论与应用(英文版)》 EI 2008年第3期273-276,共4页
The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathema... The servo-motor possesses a strongly nonlinear property due to the effect of the stimulating input voltage, load-torque and environmental operating conditions. So it is rather difficult to derive a traditional mathematical model which is capable of expressing both its dynamics and steady-state characteristics. A neural network-based adaptive control strategy is proposed in this paper. In this method, two neural networks have been adopted for system identification (NNI) and control (NNC), respectively. Then, the commonly-used specialized learning has been modified, by taking the NNI output as the approximation output of the servo-motor during the weights training to get sensitivity information. Moreover, the rule for choosing the learning rate is given on the basis of the analysis of Lyapunov stability. Finally, an example of applying the proposed control strategy on a servo-motor is presented to show its effectiveness. 展开更多
关键词 servo-motor NONLINEARITY neural networks based control Lyapunov stability Learning rate
下载PDF
Inverse Molecule Design with Invertible Neural Networks as Generative Models 被引量:1
19
作者 Wei Hu 《Journal of Biomedical Science and Engineering》 2021年第7期305-315,共11页
Using neural networks for supervised learning means learning a function that maps input <em>x</em> to output <em>y</em>. However, in many applications, the inverse learning is also wanted, <... Using neural networks for supervised learning means learning a function that maps input <em>x</em> to output <em>y</em>. However, in many applications, the inverse learning is also wanted, <em>i.e.</em>, inferring <em>y</em> from <em>x</em>, which requires invertibility of the learning. Since the dimension of input is usually much higher than that of the output, there is information loss in the forward learning from input to output. Thus, creating invertible neural networks is a difficult task. However, recent development of invertible learning techniques such as normalizing flows has made invertible neural networks a reality. In this work, we applied flow-based invertible neural networks as generative models to inverse molecule design. In this context, the forward learning is to predict chemical properties given a molecule, and the inverse learning is to infer the molecules given the chemical properties. Trained on 100 and 1000 molecules, respectively, from a benchmark dataset QM9, our model identified novel molecules that had chemical property values well exceeding the limits of the training molecules as well as the limits of the whole QM9 of 133,885 molecules, moreover our generative model could easily sample many molecules (<em>x</em> values) from any one chemical property value (<em>y</em> value). Compared with the previous method in the literature that could only optimize one molecule for one chemical property value at a time, our model could be trained once and then be sampled any multiple times and for any chemical property values without the need of retraining. This advantage comes from treating inverse molecule design as an inverse regression problem. In summary, our main contributions were two: 1) our model could generalize well from the training data and was very data efficient, 2) our model could learn bidirectional correspondence between molecules and their chemical properties, thereby offering the ability to sample any number of molecules from any <em>y</em> values. In conclusion, our findings revealed the efficiency and effectiveness of using invertible neural networks as generative models in inverse molecule design. 展开更多
关键词 inverse Molecule Design Invertible neural networks Normalizing Flows
下载PDF
Spectral transfer-learning-based metasurface design assisted by complex-valued deep neural network
20
作者 Yi Xu Fu Li +6 位作者 Jianqiang Gu Zhiwei Bi Bing Cao Quanlong Yang Jiaguang Han Qinghua Hu Weili Zhang 《Advanced Photonics Nexus》 2024年第2期8-17,共10页
Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain su... Recently,deep learning has been used to establish the nonlinear and nonintuitive mapping between physical structures and electromagnetic responses of meta-atoms for higher computational efficiency.However,to obtain sufficiently accurate predictions,the conventional deep-learning-based method consumes excessive time to collect the data set,thus hindering its wide application in this interdisciplinary field.We introduce a spectral transfer-learning-based metasurface design method to achieve excellent performance on a small data set with only 1000 samples in the target waveband by utilizing open-source data from another spectral range.We demonstrate three transfer strategies and experimentally quantify their performance,among which the“frozen-none”robustly improves the prediction accuracy by∼26%compared to direct learning.We propose to use a complex-valued deep neural network during the training process to further improve the spectral predicting precision by∼30%compared to its real-valued counterparts.We design several typical teraherz metadevices by employing a hybrid inverse model consolidating this trained target network and a global optimization algorithm.The simulated results successfully validate the capability of our approach.Our work provides a universal methodology for efficient and accurate metasurface design in arbitrary wavebands,which will pave the way toward the automated and mass production of metasurfaces. 展开更多
关键词 transfer learning complex-valued deep neural network metasurface inverse design conditioned adaptive particle swarm optimization TERAHERTZ
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部