Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximati...Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximating to function. Based on it, approximating to NLAR(p) with wavelet neural networks is studied.展开更多
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs....Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.展开更多
:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that i...:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems.展开更多
Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In...Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.展开更多
Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. Howev...Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. However, limitations exist in traditional stochastic and econometric explanation modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set inputs for WNN forecasting model. The paper examines non-linearity and non-stationary features of the BDTI and elaborates WNN model building procedures. Finally, the comparison of forecasting performance between WNN and ARIMA time series models show that WNN has better forecasting accuracy than traditionally used modeling techniques.展开更多
In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the...In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations.展开更多
A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time s...A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able to provide a good fit with the observed data, especially the peak values during the testing period. The benchmark results from WNN model applications showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models (ANN and AR).展开更多
Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across ...Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy.展开更多
In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical tra...In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical transmission signals and the gradient descent algorithm is applied to estimate the coefficients of the LWNN. Secondly, this technique is implemented to identify and optimize the coefficient parameters of the proposed pre-distorter (PD), i.e., the inversion model of the PA. The proposed method is most efficient and the pre-distorter shows stability and effectiveness because of the rich properties of the LWNN. A quite significant improvement in linearity is achieved based on the measured data of the PA characteristics and out power spectrum has been compared.展开更多
The research is focused on the development of automatic detection method of abnormal features, that occur in recorded time series of ionosphere critical frequency fOF2 during periods of high solar or seismic activity....The research is focused on the development of automatic detection method of abnormal features, that occur in recorded time series of ionosphere critical frequency fOF2 during periods of high solar or seismic activity. The method is based on joint application of wavelet-transformation and neural networks. On the basis of wavelet transformation algorithms for the detection of features and estimation of their parameters were developed. Detection and analysis of characteristic components of time series are performed on the basis of joint application of wavelet transformation and neural networks. Method's approbation is performed on fOF2 data obtained at the observatory “Paratunka” (Paratunka settlement, Kamchatskiy Kray).展开更多
An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function ...An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function (RBF) neural network is presented. The face images are decomposed by 2-level two-dimensional (2-D) wavelet packet transformation. The wavelet packet coefficients obtained from the wavelet packet transformation are averaged using two different proposed methods. In the first method, wavelet packet coefficients of individual samples of a class are averaged then decomposed. The wavelet packet coefficients of all the samples of a class are averaged in the second method. The averaged wavelet packet coefficients are recognized by a RBF network. The proposed work tested on three face databases such as Olivetti-Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essexface database. The proposed methods result in dimensionality reduction, low computational complexity and provide better recognition rates. The computational complexity is low as the dimensionality of the input pattern is reduced.展开更多
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n...The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.展开更多
A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients c...A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima.展开更多
Multiple access interference (MAI) and near-far problem are two major obstacles in DS-CDMA systems. Combining wavelet neural networks and two matched filters, the novel multiuser detector, which is based on multiple v...Multiple access interference (MAI) and near-far problem are two major obstacles in DS-CDMA systems. Combining wavelet neural networks and two matched filters, the novel multiuser detector, which is based on multiple variable function estimation wavelet networks over single path asynchronous channel and space-time channel respectively is presented. Excellent localization characteristics of wavelet functions in both time and frequency domains allowed hierarchical multiple resolution learning of input-output data mapping. The ma thematic frame of the neural networks and error back ward propagation algorithm are introduced. The complexity of the multiuser detector only depends on that of wavelet networks. With numerical simulations and performance analysis, it indicates that the multiuser detector has excellent performance in eliminating MAI and near-far resistance.展开更多
A new approach is proposed to improve the general identification algor ithm of multidimensional systems using wavelet networks. The general algorithm i nvolves mapping vector input into its norm to avoid problem of di...A new approach is proposed to improve the general identification algor ithm of multidimensional systems using wavelet networks. The general algorithm i nvolves mapping vector input into its norm to avoid problem of dimensionality in construction multidimensional wavelet basis functions. Thus, the basis function s are spherically symmetric without direction selectivity. In order to restore t he direction selectivity, the improved approach weights the input variables befo r e mapping it into a scalar form. The weights can be obtained using universal opt imization algorithms. Generally, only local optimal weights are obtained. Even s o, performance of identification can be improved.展开更多
Fault diagnosis is confronted with two problems; how to '' measure'' the growthof a fault and how to predict the remaining useful lifetime of such a failing component or machine.This paper attempts to ...Fault diagnosis is confronted with two problems; how to '' measure'' the growthof a fault and how to predict the remaining useful lifetime of such a failing component or machine.This paper attempts to solve these two problems by proposing a model of fault prognosis usingwavelet basis neural network. Gaussian radial basis functions and Mexican hat wavelet frames areused as scaling functions and wavelets, respectively. The centers of the basis functions arecalculated using a dyadic expansion scheme and a k-means clustering algorithm.展开更多
In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the mo...In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second...Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks.展开更多
Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulati...Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.展开更多
文摘Recently, wavelet neural networks have become a popular tool for non-linear functional approximation. Wavelet neural networks, which basis functions are orthonormal scalling functions, are more suitable in approximating to function. Based on it, approximating to NLAR(p) with wavelet neural networks is studied.
文摘Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.
基金This study is based on the research project“Development of Cyberdroid based on Cognitive Intelligent system applications”(2019–2020)funded by Crypttech company(https://www.crypttech.com/en/)within the contract by ITUNOVA,Istanbul Technical University Technology Transfer Office.
文摘:Machine Learning(ML)algorithms have been widely used for financial time series prediction and trading through bots.In this work,we propose a Predictive Error Compensated Wavelet Neural Network(PEC-WNN)ML model that improves the prediction of next day closing prices.In the proposed model we use multiple neural networks where the first one uses the closing stock prices from multiple-scale time-domain inputs.An additional network is used for error estimation to compensate and reduce the prediction error of the main network instead of using recurrence.The performance of the proposed model is evaluated using six different stock data samples in the New York stock exchange.The results have demonstrated significant improvement in forecasting accuracy in all cases when the second network is used in accordance with the first one by adding the outputs.The RMSE error is 33%improved when the proposed PEC-WNN model is used compared to the Long ShortTerm Memory(LSTM)model.Furthermore,through the analysis of training mechanisms,we found that using the updated training the performance of the proposed model is improved.The contribution of this study is the applicability of simultaneously different time frames as inputs.Cascading the predictive error compensation not only reduces the error rate but also helps in avoiding overfitting problems.
基金supported by the National Key Research and Development Program of China [grant number2017YFA0604500]
文摘Wind speed forecasting is of great importance for wind farm management and plays an important role in grid integration. Wind speed is volatile in nature and therefore it is difficult to predict with a single model. In this study, three hybrid multi-step wind speed forecasting models are developed and compared — with each other and with earlier proposed wind speed forecasting models. The three models are based on wavelet decomposition(WD), the Cuckoo search(CS) optimization algorithm, and a wavelet neural network(WNN). They are referred to as CS-WD-ANN(artificial neural network), CS-WNN, and CS-WD-WNN, respectively. Wind speed data from two wind farms located in Shandong, eastern China, are used in this study. The simulation result indicates that CS-WD-WNN outperforms the other two models, with minimum statistical errors. Comparison with earlier models shows that CS-WD-WNN still performs best, with the smallest statistical errors. The employment of the CS optimization algorithm in the models shows improvement compared with the earlier models.
文摘Baltic Exchange Dirty Tanker Index (BDTI) is an important assessment index in world dirty tanker shipping industry. Actors in the industry sector can gain numerous benefits from accurate forecasting of the BDTI. However, limitations exist in traditional stochastic and econometric explanation modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set inputs for WNN forecasting model. The paper examines non-linearity and non-stationary features of the BDTI and elaborates WNN model building procedures. Finally, the comparison of forecasting performance between WNN and ARIMA time series models show that WNN has better forecasting accuracy than traditionally used modeling techniques.
文摘In this paper, a new method to solve multiscale difference equation(MSDE) with the M-band wavelet neural networks is proposed. It is shown that the method has many advantages over the existing methods and enlarges the range of the solvable equations.
文摘A new hybrid model which combines wavelets and Artificial Neural Network (ANN) called wavelet neural network (WNN) model was proposed in the current study and applied for time series modeling of river flow. The time series of daily river flow of the Malaprabha River basin (Karnataka state, India) were analyzed by the WNN model. The observed time series are decomposed into sub-series using discrete wavelet transform and then appropriate sub-series is used as inputs to the neural network for forecasting hydrological variables. The hybrid model (WNN) was compared with the standard ANN and AR models. The WNN model was able to provide a good fit with the observed data, especially the peak values during the testing period. The benchmark results from WNN model applications showed that the hybrid model produced better results in estimating the hydrograph properties than the latter models (ANN and AR).
文摘Machine learning is an integral technology many people utilize in all areas of human life. It is pervasive in modern living worldwide, and has multiple usages. One application is image classification, embraced across many spheres of influence such as business, finance, medicine, etc. to enhance produces, causes, efficiency, etc. This need for more accurate, detail-oriented classification increases the need for modifications, adaptations, and innovations to Deep Learning Algorithms. This article used Convolutional Neural Networks (CNN) to classify scenes in the CIFAR-10 database, and detect emotions in the KDEF database. The proposed method converted the data to the wavelet domain to attain greater accuracy and comparable efficiency to the spatial domain processing. By dividing image data into subbands, important feature learning occurred over differing low to high frequencies. The combination of the learned low and high frequency features, and processing the fused feature mapping resulted in an advance in the detection accuracy. Comparing the proposed methods to spatial domain CNN and Stacked Denoising Autoencoder (SDA), experimental findings revealed a substantial increase in accuracy.
文摘In this paper, a novel technique for power amplifier (PA) linearization is presented. The Legendre wavelet neural networks (LWNN) is first utilized to model PA and inverse structure of the PA by applying practical transmission signals and the gradient descent algorithm is applied to estimate the coefficients of the LWNN. Secondly, this technique is implemented to identify and optimize the coefficient parameters of the proposed pre-distorter (PD), i.e., the inversion model of the PA. The proposed method is most efficient and the pre-distorter shows stability and effectiveness because of the rich properties of the LWNN. A quite significant improvement in linearity is achieved based on the measured data of the PA characteristics and out power spectrum has been compared.
文摘The research is focused on the development of automatic detection method of abnormal features, that occur in recorded time series of ionosphere critical frequency fOF2 during periods of high solar or seismic activity. The method is based on joint application of wavelet-transformation and neural networks. On the basis of wavelet transformation algorithms for the detection of features and estimation of their parameters were developed. Detection and analysis of characteristic components of time series are performed on the basis of joint application of wavelet transformation and neural networks. Method's approbation is performed on fOF2 data obtained at the observatory “Paratunka” (Paratunka settlement, Kamchatskiy Kray).
文摘An efficient face recognition system with face image representation using averaged wavelet packet coefficients, compact and meaningful feature vectors dimensional reduction and recognition using radial basis function (RBF) neural network is presented. The face images are decomposed by 2-level two-dimensional (2-D) wavelet packet transformation. The wavelet packet coefficients obtained from the wavelet packet transformation are averaged using two different proposed methods. In the first method, wavelet packet coefficients of individual samples of a class are averaged then decomposed. The wavelet packet coefficients of all the samples of a class are averaged in the second method. The averaged wavelet packet coefficients are recognized by a RBF network. The proposed work tested on three face databases such as Olivetti-Oracle Research Lab (ORL), Japanese Female Facial Expression (JAFFE) and Essexface database. The proposed methods result in dimensionality reduction, low computational complexity and provide better recognition rates. The computational complexity is low as the dimensionality of the input pattern is reduced.
文摘The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.
基金Supported by the Eu Information Technologies Programme Project(No. 22416) and National High Tech R&D Project(863/Computer Integrated Manufacture System AA413130) of China.
文摘A type of wavelet neural network, in which the scale function isadopted only, is proposed in this paper for non-linear dynamicprocess modelling. Its network size is decreased significantly andthe weight coefficients can be estimated by a linear algorithm. Thewavelet neural network holds some advantages superior to other typesof neural networks. First, its network structure is easy to specifybased on its theoretical analysis and intuition. Secondly, networktraining does not rely on stochastic gradient type techniques andavoids the problem of poor convergence or undesirable local minima.
基金This project was supported by the National Natural Science Foundation of China (60073053 60133010).
文摘Multiple access interference (MAI) and near-far problem are two major obstacles in DS-CDMA systems. Combining wavelet neural networks and two matched filters, the novel multiuser detector, which is based on multiple variable function estimation wavelet networks over single path asynchronous channel and space-time channel respectively is presented. Excellent localization characteristics of wavelet functions in both time and frequency domains allowed hierarchical multiple resolution learning of input-output data mapping. The ma thematic frame of the neural networks and error back ward propagation algorithm are introduced. The complexity of the multiuser detector only depends on that of wavelet networks. With numerical simulations and performance analysis, it indicates that the multiuser detector has excellent performance in eliminating MAI and near-far resistance.
文摘A new approach is proposed to improve the general identification algor ithm of multidimensional systems using wavelet networks. The general algorithm i nvolves mapping vector input into its norm to avoid problem of dimensionality in construction multidimensional wavelet basis functions. Thus, the basis function s are spherically symmetric without direction selectivity. In order to restore t he direction selectivity, the improved approach weights the input variables befo r e mapping it into a scalar form. The weights can be obtained using universal opt imization algorithms. Generally, only local optimal weights are obtained. Even s o, performance of identification can be improved.
文摘Fault diagnosis is confronted with two problems; how to '' measure'' the growthof a fault and how to predict the remaining useful lifetime of such a failing component or machine.This paper attempts to solve these two problems by proposing a model of fault prognosis usingwavelet basis neural network. Gaussian radial basis functions and Mexican hat wavelet frames areused as scaling functions and wavelets, respectively. The centers of the basis functions arecalculated using a dyadic expansion scheme and a k-means clustering algorithm.
文摘In the motor fault diagnosis technique, vibration and stator current frequency components of detection are two main means. This article will discuss the signal detection method based on vibration fault. Because the motor vibration signal is a non-stationary random signal, fault signals often contain a lot of time-varying, burst proper- ties of ingredients. The traditional Fourier signal analysis can not effectively extract the motor fault characteristics, but are also likely to be rich in failure information but a weak signal as noise. Therefore, we introduce wavelet packet transforms to extract the fault characteristics of the signal information. Obtained was the result as the neural network input signal, using the L-M neural network optimization method for training, and then used the BP net- work for fault recognition. This paper uses Matlab software to simulate and confirmed the method of motor fault di- agnosis validity and accuracy
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks.
基金funded by NARI Group’s Independent Project of China(Granted No.524609230125)the foundation of NARI-TECH Nanjing Control System Ltd.of China(Granted No.0914202403120020).
文摘Time series prediction has always been an important problem in the field of machine learning.Among them,power load forecasting plays a crucial role in identifying the behavior of photovoltaic power plants and regulating their control strategies.Traditional power load forecasting often has poor feature extraction performance for long time series.In this paper,a new deep learning framework Residual Stacked Temporal Long Short-Term Memory(RST-LSTM)is proposed,which combines wavelet decomposition and time convolutional memory network to solve the problem of feature extraction for long sequences.The network framework of RST-LSTM consists of two parts:one is a stacked time convolutional memory unit module for global and local feature extraction,and the other is a residual combination optimization module to reduce model redundancy.Finally,this paper demonstrates through various experimental indicators that RST-LSTM achieves significant performance improvements in both overall and local prediction accuracy compared to some state-of-the-art baseline methods.