In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ...In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.展开更多
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ...The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.展开更多
Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificia...Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities.展开更多
The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and n...The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.展开更多
Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working envir...Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working environment.This paper presents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks(CNNs)and decision-level sensor fusion.In the proposed approach,a CNN is first utilized to classify the faults of a gear transmission based on the acquired signals from each of the sensors.Raw sensory data is sent directly into the CNN models without manual feature extraction.Then,classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the CNN models.Experimental study is conducted,which shows the superior performance of the developed method in the classification of different gear transmission conditions in an automated industrial machine.The presented approach also achieves end-to-end learning that ean be applied to the fault elassification of a gear transmission under various operating eonditions and with signals from different types of sensors.展开更多
This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Li...This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.展开更多
The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal...The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.展开更多
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ...In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.展开更多
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri...Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.展开更多
Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tole...Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance.展开更多
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m...The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.展开更多
This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippo...This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases.展开更多
A structure equivalent model of fuzzy-neural networks for system condition monitoring is proposed, whose outputs are the condition or the degree of fault occurring in some parts of the system. This network is composed...A structure equivalent model of fuzzy-neural networks for system condition monitoring is proposed, whose outputs are the condition or the degree of fault occurring in some parts of the system. This network is composed of six layers of neurons,which represent the membership functions, fuzzy rules and outputs respectively. The structure parameters and weights are obtained by processing off-line learning, and the fuzzy rules are derived from the experience. The results of the computer simulation for the autonomous underwater vehicle condition monitoring based on this fuzzy-neural networks show that the network is efficient and feasible in gaining the condition information or the degree of fault of the two main propellers.展开更多
A Layered Interactive Neural-fuzzy Fusion System, which is a general fusion model is presented with its structure and algorithm studied systematically. The system, according to the layering technique, is logically com...A Layered Interactive Neural-fuzzy Fusion System, which is a general fusion model is presented with its structure and algorithm studied systematically. The system, according to the layering technique, is logically composed of a hierarchical set of subsystems. Subsystems with the same rank make up a specific layer. Corresponding fusion techniques are adopted for each layer. Thus a general scheme from the whole to the detail is obtained for the design of tile fusion system. Furthermore, since the element of the bottom layer can be defined by object-oriented analyzing method, the flexibility of the fusion system is consequently improved. A practical neural-fuzzy fusion system is developed for data processing problem and its performance is proved to be better than the old ones.展开更多
All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At ...All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.展开更多
A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were act...A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were acted as training input and the other 26 groups of data were acted as the confirmed data in the system. The result showed that the testing data was approximately the same as the predicted data. So it gave a new way to solve the problem that the status of the water quality couldn't be predicted in time and it's hard to watching and measuring the factors dynamic.展开更多
At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-se...At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.展开更多
Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At f...Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of R n . Secondly,by introducing cut preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions.展开更多
基金This project was supported by the National Natural Science Foundation of China (60572038)
文摘In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm.
文摘The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.
文摘Reliable on line cutting tool conditioning monitoring is an essential feature of automatic machine tool and flexible manufacturing system (FMS) and computer integrated manufacturing system (CIMS). Recently artificial neural networks (ANNs) are used for this purpose in conjunction with suitable sensory systems. The present work in Norwegian University of Science and Technology (NTNU) uses back propagation neural networks (BP) and fuzzy neural networks (FNN) to process the cutting tool state data measured with force and acoustic emission (AE) sensors, and implements a valuable on line tool condition monitoring system using the ANNs. Different ANN structures are designed and investigated to estimate the tool wear state based on the fusion of acoustic emission and force signals. Finally, four case studies are introduced for the sensing and ANN processing of the tool wear states and the failures of the tool with practical experiment examples. The results indicate that a tool wear identification system can be achieved using the sensors integration with ANNs, and that ANNs provide a very effective method of implementing sensor integration for on line monitoring of tool wear states and abnormalities.
文摘The tight wavelet neural network was constituted by taking the nonlinear Morlet wavelet radices as the excitation function. The idiographic algorithm was presented. It combined the advantages of wavelet analysis and neural networks. The integrated wavelet neural network fault diagnosis system was set up based on both the information fusion technology and actual fault diagnosis, which took the sub-wavelet neural network as primary diagnosis from different sides, then came to the conclusions through decision-making fusion. The realizable policy of the diagnosis system and established principle of the sub-wavelet neural networks were given. It can be deduced from the examples that it takes full advantage of diversified characteristic information, and improves the diagnosis rate.
基金supported byan ENGAGE Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC),[funding reference number 11R01296].
文摘Gear transmissions are widely used in industrial drive systems.Fault diagnosis of gear transmissions is important for maintaining the system performance,reducing the maintenance cost,and providing a safe working environment.This paper presents a novel fault diagnosis approach for gear transmissions based on convolutional neural networks(CNNs)and decision-level sensor fusion.In the proposed approach,a CNN is first utilized to classify the faults of a gear transmission based on the acquired signals from each of the sensors.Raw sensory data is sent directly into the CNN models without manual feature extraction.Then,classifier level sensor fusion is carried out to achieve improved classification accuracy by fusing the classification results from the CNN models.Experimental study is conducted,which shows the superior performance of the developed method in the classification of different gear transmission conditions in an automated industrial machine.The presented approach also achieves end-to-end learning that ean be applied to the fault elassification of a gear transmission under various operating eonditions and with signals from different types of sensors.
基金National Natural Science Foundation of China under Grants 62203338,61936004,61821003,62173259 and 62176192Postdoctoral Science Foundation of China under Grant 2022M722485.
文摘This paper investigates the exponential and prescribed finite-time stabilization with time-varying controller.First,the constraints of boundedness and differentiability on time delays are simultaneously relaxed,the Lipschitz condition for activation function is also relaxed.Second,different from the traditional Lyapunov function,two different time-varying Lyapunov functions are respectively constructed to achieve the exponential and prescribed finite-time stabilization.Significantly,the exponential convergence rate and the settling time are constants that can be given in advance and are not affected by system parameters and initial states.In addition,the time-varying controllers have good tolerance for disturbance caused by discontinuous functions and the disturbance is perfectly resolved and does not affect the control performance.Especially,the form of controllers is relatively simple and there is not necessary to design the fractional-order controllers for prescribed finite-time stabilization.Furthermore,the exponential and prescribed finite-time stabilization for FNNs without delay are respectively established via continuous time-varying state feedback control.Finally,examples show the effectiveness of the proposed control methods.
文摘The purpose of this study was to address the challenges in predicting and classifying accuracy in modeling Container Dwell Time (CDT) using Artificial Neural Networks (ANN). This objective was driven by the suboptimal outcomes reported in previous studies and sought to apply an innovative approach to improve these results. To achieve this, the study applied the Fusion of Activation Functions (FAFs) to a substantial dataset. This dataset included 307,594 container records from the Port of Tema from 2014 to 2022, encompassing both import and transit containers. The RandomizedSearchCV algorithm from Python’s Scikit-learn library was utilized in the methodological approach to yield the optimal activation function for prediction accuracy. The results indicated that “ajaLT”, a fusion of the Logistic and Hyperbolic Tangent Activation Functions, provided the best prediction accuracy, reaching a high of 82%. Despite these encouraging findings, it’s crucial to recognize the study’s limitations. While Fusion of Activation Functions is a promising method, further evaluation is necessary across different container types and port operations to ascertain the broader applicability and generalizability of these findings. The original value of this study lies in its innovative application of FAFs to CDT. Unlike previous studies, this research evaluates the method based on prediction accuracy rather than training time. It opens new avenues for machine learning engineers and researchers in applying FAFs to enhance prediction accuracy in CDT modeling, contributing to a previously underexplored area.
基金supported by National Natural Science Foundationof China (No. 60674056)National Key Basic Research and Devel-opment Program of China (No. 2002CB312200)+1 种基金Outstanding YouthFunds of Liaoning Province (No. 2005219001)Educational De-partment of Liaoning Province (No. 2006R29 and No. 2007T80)
文摘In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach.
文摘Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error.
基金Major State Basic Research Development Program,China(No.2005CB221505)Special Scientific Research Foundation for Doctoral Subject of Colleges and Universities in China(No.20050248058)
文摘Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance.
文摘The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types.
文摘This paper discusses the general decay synchronization problem for a class of fuzzy competitive neural networks with time-varying delays and discontinuous activation functions. Firstly, based on the concept of Filippov solutions for right-hand discontinuous systems, some sufficient conditions for general decay synchronization of the considered system are obtained via designing a nonlinear feedback controller and applying discontinuous differential equation theory, Lyapunov functional methods and some inequality techniques. Finally, one numerical example is given to verify the effectiveness of the proposed theoretical results. The general decay synchronization considered in this article can better estimate the convergence rate of the system, and the exponential synchronization and polynomial synchronization can be seen as its special cases.
文摘A structure equivalent model of fuzzy-neural networks for system condition monitoring is proposed, whose outputs are the condition or the degree of fault occurring in some parts of the system. This network is composed of six layers of neurons,which represent the membership functions, fuzzy rules and outputs respectively. The structure parameters and weights are obtained by processing off-line learning, and the fuzzy rules are derived from the experience. The results of the computer simulation for the autonomous underwater vehicle condition monitoring based on this fuzzy-neural networks show that the network is efficient and feasible in gaining the condition information or the degree of fault of the two main propellers.
文摘A Layered Interactive Neural-fuzzy Fusion System, which is a general fusion model is presented with its structure and algorithm studied systematically. The system, according to the layering technique, is logically composed of a hierarchical set of subsystems. Subsystems with the same rank make up a specific layer. Corresponding fusion techniques are adopted for each layer. Thus a general scheme from the whole to the detail is obtained for the design of tile fusion system. Furthermore, since the element of the bottom layer can be defined by object-oriented analyzing method, the flexibility of the fusion system is consequently improved. A practical neural-fuzzy fusion system is developed for data processing problem and its performance is proved to be better than the old ones.
文摘All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.
基金Supported by National Natural Science Foundation of China (40801227)Open Foundation of Marine and Estuarine Fisheries Resources of Ministry of Agriculture and the Key Laboratory of Ecology (Open-2-04-09)~~
文摘A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were acted as training input and the other 26 groups of data were acted as the confirmed data in the system. The result showed that the testing data was approximately the same as the predicted data. So it gave a new way to solve the problem that the status of the water quality couldn't be predicted in time and it's hard to watching and measuring the factors dynamic.
文摘At present, multi-se nsor fusion is widely used in object recognition and classification, since this technique can efficiently improve the accuracy and the ability of fault toleranc e. This paper describes a multi-sensor fusion system, which is model-based and used for rotating mechanical failure diagnosis. In the data fusion process, the fuzzy neural network is selected and used for the data fusion at report level. By comparing the experimental results of fault diagnoses based on fusion data wi th that on original separate data,it is shown that the former is more accurate than the latter.
基金This work was supported by National Natural Science Foundation(699740 4 1 699740 0 6)
文摘Four layer feedforward regular fuzzy neural networks are constructed. Universal approximations to some continuous fuzzy functions defined on F 0 (R) n by the four layer fuzzy neural networks are shown. At first,multivariate Bernstein polynomials associated with fuzzy valued functions are empolyed to approximate continuous fuzzy valued functions defined on each compact set of R n . Secondly,by introducing cut preserving fuzzy mapping,the equivalent conditions for continuous fuzzy functions that can be arbitrarily closely approximated by regular fuzzy neural networks are shown. Finally a few of sufficient and necessary conditions for characterizing approximation capabilities of regular fuzzy neural networks are obtained. And some concrete fuzzy functions demonstrate our conclusions.