期刊文献+
共找到6,752篇文章
< 1 2 250 >
每页显示 20 50 100
An Improved SPSA Algorithm for System Identification Using Fuzzy Rules for Training Neural Networks 被引量:1
1
作者 Ahmad T.Abdulsadda Kamran Iqbal 《International Journal of Automation and computing》 EI 2011年第3期333-339,共7页
Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper descri... Simultaneous perturbation stochastic approximation (SPSA) belongs to the class of gradient-free optimization methods that extract gradient information from successive objective function evaluation. This paper describes an improved SPSA algorithm, which entails fuzzy adaptive gain sequences, gradient smoothing, and a step rejection procedure to enhance convergence and stability. The proposed fuzzy adaptive simultaneous perturbation approximation (FASPA) algorithm is particularly well suited to problems involving a large number of parameters such as those encountered in nonlinear system identification using neural networks (NNs). Accordingly, a multilayer perceptron (MLP) network with popular training algorithms was used to predicate the system response. We found that an MLP trained by FASPSA had the desired accuracy that was comparable to results obtained by traditional system identification algorithms. Simulation results for typical nonlinear systems demonstrate that the proposed NN architecture trained with FASPSA yields improved system identification as measured by reduced time of convergence and a smaller identification error. 展开更多
关键词 nonlinear system identification simultaneous perturbation stochastic approximation (SPSA) neural networks (NNs) fuzzy rules multi-layer perceptron (MLP).
下载PDF
DESIGN OF NONLINEAR OBSERVER FOR NONLINEAR SYSTEM BASED ON RBF NEURAL NETWORKS
2
作者 龚华军 Chowdhury F N 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期311-315,共5页
A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is a... A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is approximated. Compared with the conventional linear observer, the observer provides more accurate estimation of the state. The state estimation error is proved to asymptotically approach zero with the Lyapunov method. The simulation result shows that the proposed observer scheme is effective and has a potential application ability in the fault detection and identification (FDI), and the state estimation. 展开更多
关键词 observer nonlinear system state estimation neural network
下载PDF
Adaptive H~∞ Control of Nonlinear Systems with Neural Networks 被引量:6
3
作者 姜长生 陈谋 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第1期36-41,共6页
The discussion is devoted to the adaptive H ∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H ∞ cont... The discussion is devoted to the adaptive H ∞ control method based on RBF neural networks for uncertain nonlinear systems in this paper. The controller consists of an equivalent controller and an H ∞ controller. The RBF neural networks are used to approximate the nonlinear functions and the approximation errors of the neural networks are used in the adaptive law to improve the performance of the systems. The H ∞ controller is designed for attenuating the influence of external disturbance and neural network approximation errors. The controller can not only guarantee stability of the nonlinear systems, but also attenuate the effect of the external disturbance and neural networks approximation errors to reach performance indexes. Finally, an example validates the effectiveness of this method. 展开更多
关键词 neural networks nonlinear systems adaptive control H control
下载PDF
Adaptive Backstepping Output Feedback Control for SISO Nonlinear System Using Fuzzy Neural Networks 被引量:2
4
作者 Shao-Cheng Tong Yong-Ming Li 《International Journal of Automation and computing》 EI 2009年第2期145-153,共9页
In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the ... In this paper, a new fuzzy-neural adaptive control approach is developed for a class of single-input and single-output (SISO) nonlinear systems with unmeasured states. Using fuzzy neural networks to approximate the unknown nonlinear functions, a fuzzy- neural adaptive observer is introduced for state estimation as well as system identification. Under the framework of the backstepping design, fuzzy-neural adaptive output feedback control is constructed recursively. It is proven that the proposed fuzzy adaptive control approach guarantees the global boundedness property for all the signals, driving the tracking error to a small neighbordhood of the origin. Simulation example is included to illustrate the effectiveness of the proposed approach. 展开更多
关键词 nonlinear systems backstepping control adaptive fuzzy neural networks control state observer output feedback control.
下载PDF
Fault-Tolerant Control of Nonlinear Systems Based on Fuzzy Neural Networks 被引量:1
5
作者 左东升 姜建国 《Journal of Donghua University(English Edition)》 EI CAS 2009年第6期634-638,共5页
Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tole... Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance. 展开更多
关键词 fuzzy neural networks nonlinear system fault-tolerant control ADAPTIVE
下载PDF
An Improved Differential Evolution Trained Neural Network Scheme for Nonlinear System Identification
6
作者 Bidyadhar Subudhi Debashisha Jena 《International Journal of Automation and computing》 EI 2009年第2期137-144,共8页
This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of ... This paper presents an improved nonlinear system identification scheme using di?erential evolution (DE), neural network (NN) and Levenberg Marquardt algorithm (LM). With a view to achieve better convergence of NN weights optimization during the training, the DE and LM are used in a combined framework to train the NN. We present the convergence analysis of the DE and demonstrate the efficacy of the proposed improved system identification algorithm by exploiting the combined DE and LM training of the NN and suitably implementing it together with other system identification methods, namely NN and DE+NN on a number of examples including a practical case study. The identification results obtained through a series of simulation studies of these methods on different nonlinear systems demonstrate that the proposed DE and LM trained NN approach to nonlinear system identification can yield better identification results in terms of time of convergence and less identification error. 展开更多
关键词 Differential evolution neural network (NN) nonlinear system identification Levenberg Marquardt algorithm
下载PDF
Adaptive output-feedback control for MIMO nonlinear systems with time-varying delays using neural networks 被引量:1
7
作者 Weisheng Chen Ruihong Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第5期850-858,共9页
An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time de... An adaptive neural network output-feedback regulation approach is proposed for a class of multi-input-multi-output nonlinear time-varying delayed systems.Both the designed observer and controller are free from time delays.Different from the existing results,this paper need not the assumption that the upper bounding functions of time-delay terms are known,and only a neural network is employed to compensate for all the upper bounding functions of time-delay terms,so the designed controller procedure is more simplified.In addition,the resulting closed-loop system is proved to be semi-globally ultimately uniformly bounded,and the output regulation error converges to a small residual set around the origin.Two simulation examples are provided to verify the effectiveness of control scheme. 展开更多
关键词 neural network OUTPUT-FEEDBACK nonlinear time-delay systems backstepping.
下载PDF
An Adaptive Sliding Mode Tracking Controller Using BP Neural Networks for a Class of Large-scale Nonlinear Systems
8
作者 刘子龙 田方 张伟军 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期753-758,共6页
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece... A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller. 展开更多
关键词 BP neural networks SLIDING mode control LARGE-SCALE nonlinear systems uncertainty dynamics
下载PDF
Adaptive L_2 control of nonlinear systems using neural networks
9
作者 HuaijingQU YingZHANG FengrongSUN 《控制理论与应用(英文版)》 EI 2004年第4期332-338,共7页
An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes t... An adaptive neural network controller is developed to achieve output-tracking of a class of nonlinear systems. The global L 2 stability of the closed-loop system is established. The proposed control design overcomes the limitation of the conventional adaptive neural control design where the modeling error brought by neural networks is assumed to be bounded over a compact set. Moreover, the generalized matching conditions are also relaxed in the proposed L 2 control design as the gains for the external disturbances entering the system are allowed to have unknown upper bounds. 展开更多
关键词 Adaptive control neural network nonlinear systems STABILITY L 2 controller Backstepping design
下载PDF
Backlash Nonlinear Compensation of Servo Systems Using Backpropagation Neural Networks 被引量:2
10
作者 何超 徐立新 张宇河 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期300-305,共6页
Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on s... Aim To eliminate the influences of backlash nonlinear characteristics generally existing in servo systems, a nonlinear compensation method using backpropagation neural networks(BPNN) is presented. Methods Based on some weapon tracking servo system, a three layer BPNN was used to off line identify the backlash characteristics, then a nonlinear compensator was designed according to the identification results. Results The simulation results show that the method can effectively get rid of the sustained oscillation(limit cycle) of the system caused by the backlash characteristics, and can improve the system accuracy. Conclusion The method is effective on sloving the problems produced by the backlash characteristics in servo systems, and it can be easily accomplished in engineering. 展开更多
关键词 servo system backlash nonlinear characteristics limit cycle backpropagation neural networks(BPNN) compensation methods
下载PDF
Nonlinear Time-Varying Systems Identification Using Basis Sequence Expansions Combined with Neural Networks
11
作者 顾成奎 王正欧 孙雅明 《Transactions of Tianjin University》 EI CAS 2003年第1期71-74,共4页
A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning ... A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results. 展开更多
关键词 nonlinear time varying systems identification basis sequence expansions neural networks
下载PDF
IDENTIFICATION OF NONLINEAR TIME VARYING SYSTEM USING FEEDFORWARD NEURAL NETWORKS 被引量:2
12
作者 王正欧 赵长海 《Transactions of Tianjin University》 EI CAS 2000年第1期8-13,共6页
As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes... As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach. 展开更多
关键词 identification nonlinear time varying system feedforward neural network Kalman filter Q and R matrices
全文增补中
Identification and Control of Dynamical Systems Using Modified Neural Networks
13
作者 任雪梅 陈杰 《Journal of Beijing Institute of Technology》 EI CAS 1999年第3期238-244,共7页
Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was empl... Aim To study the identification and control of nonlinear systems using neural networks. Methods A new type of neural network in which the dynamical error feedback is used to modify the inputs of the network was employed to reduce the inherent network approximation error. Results A new identification model constructed by the proposed network and stable filters was derived for continuous time nonlinear systems, and a stable adaptive control scheme based on the proposed networks was developed. Conclusion Theory and simulation results show that the modified neural network is feasible to control a class of nonlinear systems. 展开更多
关键词 nonlinear systems neural networks adaptive control system identification
下载PDF
Identification of Nonlinear Dynamic Systems Using Diagonal Recurrent Neural Networks 被引量:2
14
作者 Jing Wang Hui Chen(Information Engmeering School, University of Science and Techaology Beijing, Beijing 100083, China) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第2期149-151,共3页
In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning m... In order to apply a new dynamic neural network- Diagonal Recurrent Neural NetWork (DRNN) to the system identificationof nonlinear dynamic Systems and construct more accurate system models, the structure and learning method (DBP algorithm) of theDRNN are Present6d. Nonlinear system characteriStics can be identified by presenting a set of input / output patterns tO the DRNN andadjusting its weights with the DBP algorithm. Experimental results show that the DRNN has good performances in the identification ofnonlinear dynamic systems in comparison with BP networks. 展开更多
关键词 neural network system identification intelligent control control system models learning method
下载PDF
Identification of dynamic systems using support vector regression neural networks 被引量:1
15
作者 李军 刘君华 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期228-233,共6页
A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is appl... A novel adaptive support vector regression neural network (SVR-NN) is proposed, which combines respectively merits of support vector machines and a neural network. First, a support vector regression approach is applied to determine the initial structure and initial weights of the SVR-NN so that the network architecture is easily determined and the hidden nodes can adaptively be constructed based on support vectors. Furthermore, an annealing robust learning algorithm is presented to adjust these hidden node parameters as well as the weights of the SVR-NN. To test the validity of the proposed method, it is demonstrated that the adaptive SVR-NN can be used effectively for the identification of nonlinear dynamic systems. Simulation results show that the identification schemes based on the SVR-NN give considerably better performance and show faster learning in comparison to the previous neural network method. 展开更多
关键词 support vector regression neural network system identification robust learning algorithm ADAPTABILITY
下载PDF
Modeling and Control of Nonlinear Discrete-time Systems Based on Compound Neural Networks 被引量:1
16
作者 张燕 梁秀霞 +2 位作者 杨鹏 陈增强 袁著祉 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2009年第3期454-459,共6页
An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the no... An adaptive inverse controller for nonliear discrete-time system is proposed in this paper. A compound neural network is constructed to identify the nonlinear system, which includes a linear part to approximate the nonlinear system and a recurrent neural network to minimize the difference between the linear model and the real nonlinear system. Because the current control input is not included in the input vector of recurrent neural network (RNN), the inverse control law can be calculated directly. This scheme can be used in real-time nonlinear single-input single-output (SISO) and multi-input multi-output (MIMO) system control with less computation work. Simulation studies have shown that this scheme is simple and affects good control accuracy and robustness. 展开更多
关键词 adaptive inverse control compound neural network process control reaction engineering multi-input multi-output nonlinear system
下载PDF
NONLINEAR MODELING AND CONTROLLING OF ARTIFICIAL MUSCLE SYSTEM USING NEURAL NETWORKS
17
作者 Tian Sheping Ding Guoqing +1 位作者 Yan Detian Lin Liangming Department of Information Measurement and Instrumentation,Shanghai Jiaotong University,Shanghai 200030, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期306-310,共5页
The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is... The pneumatic artificial muscles are widely used in the fields of medicalrobots, etc. Neural networks are applied to modeling and controlling of artificial muscle system. Asingle-joint artificial muscle test system is designed. The recursive prediction error (RPE)algorithm which yields faster convergence than back propagation (BP) algorithm is applied to trainthe neural networks. The realization of RPE algorithm is given. The difference of modeling ofartificial muscles using neural networks with different input nodes and different hidden layer nodesis discussed. On this basis the nonlinear control scheme using neural networks for artificialmuscle system has been introduced. The experimental results show that the nonlinear control schemeyields faster response and higher control accuracy than the traditional linear control scheme. 展开更多
关键词 Artificial muscle neural networks Recursive prediction error algorithm nonlinear modeling and controlling
下载PDF
Design and performance analysis of tracking controller for uncertain nonlinear composite system using neural networks
18
作者 Endong LIU Yuanwei JING Siying ZHANG 《控制理论与应用(英文版)》 EI 2005年第2期110-116,共7页
Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smo... Based on high order dynamic neural network, this paper presents the tracking problem for uncertain nonlinear composite system, which contains external disturbance, whose nonlinearities are assumed to be unknown. A smooth controller is designed to guarantee a uniform ultimate boundedness property for the tracking error and all other signals in the dosed loop. Certain measures are utilized to test its performance. No a priori knowledge of an upper bound on the “optimal” weight and modeling error is required; the weights of neural networks are updated on-line. Numerical simulations performed on a simple example illustrate and clarify the approach. 展开更多
关键词 Uncertain nonlinear composite system Dynamic neural networks Adaptive control Performance
下载PDF
ROBUST SLIDING MODE DECENTRALIZED CONTROL FOR A CLASS OF NONLINEAR INTERCONNECTED LARGE-SCALE SYSTEM WITH NEURAL NETWORKS
19
作者 CHENMou JIANGChang-sheng CHENWen-hua 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第4期304-310,共7页
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is pro... A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method. 展开更多
关键词 nonlinear large-scale systems neural networks sliding mode control decentralized control
下载PDF
Model algorithm control using neural networks for input delayed nonlinear control system 被引量:2
20
作者 Yuanliang Zhang Kil To Chong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期142-150,共9页
The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. ... The performance of the model algorithm control method is partially based on the accuracy of the system's model. It is difficult to obtain a good model of a nonlinear system, especially when the nonlinearity is high. Neural networks have the ability to "learn"the characteristics of a system through nonlinear mapping to represent nonlinear functions as well as their inverse functions. This paper presents a model algorithm control method using neural networks for nonlinear time delay systems. Two neural networks are used in the control scheme. One neural network is trained as the model of the nonlinear time delay system, and the other one produces the control inputs. The neural networks are combined with the model algorithm control method to control the nonlinear time delay systems. Three examples are used to illustrate the proposed control method. The simulation results show that the proposed control method has a good control performance for nonlinear time delay systems. 展开更多
关键词 model algorithm control neural network nonlinear system time delay
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部