期刊文献+
共找到272篇文章
< 1 2 14 >
每页显示 20 50 100
Intelligent Information Processing in Imaging Fuzes 被引量:1
1
作者 王克勇 郑链 宋承天 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期64-67,共4页
In order to study the problem of intelligent information processing in new types of imaging fuze, the method of extracting the invariance features of target images is adopted, and radial basis function neural network ... In order to study the problem of intelligent information processing in new types of imaging fuze, the method of extracting the invariance features of target images is adopted, and radial basis function neural network is used to recognize targets. Owing to its ability of parallel processing, its robustness and generalization, the method can realize the recognition of the conditions of missile-target encounters, and meet the requirements of real-time recognition in the imaging fuze. It is shown that based on artificial neural network target recognition and burst point control are feasible. 展开更多
关键词 imaging fuze target recognition neural network radial basis function intelligent information processing
下载PDF
Efficient stochastic parallel gradient descent training for on-chip optical processor 被引量:1
2
作者 Yuanjian Wan Xudong Liu +4 位作者 Guangze Wu Min Yang Guofeng Yan Yu Zhang Jian Wang 《Opto-Electronic Advances》 SCIE EI CAS CSCD 2024年第4期5-15,共11页
In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical... In recent years,space-division multiplexing(SDM)technology,which involves transmitting data information on multiple parallel channels for efficient capacity scaling,has been widely used in fiber and free-space optical communication sys-tems.To enable flexible data management and cope with the mixing between different channels,the integrated reconfig-urable optical processor is used for optical switching and mitigating the channel crosstalk.However,efficient online train-ing becomes intricate and challenging,particularly when dealing with a significant number of channels.Here we use the stochastic parallel gradient descent(SPGD)algorithm to configure the integrated optical processor,which has less com-putation than the traditional gradient descent(GD)algorithm.We design and fabricate a 6×6 on-chip optical processor on silicon platform to implement optical switching and descrambling assisted by the online training with the SPDG algorithm.Moreover,we apply the on-chip processor configured by the SPGD algorithm to optical communications for optical switching and efficiently mitigating the channel crosstalk in SDM systems.In comparison with the traditional GD al-gorithm,it is found that the SPGD algorithm features better performance especially when the scale of matrix is large,which means it has the potential to optimize large-scale optical matrix computation acceleration chips. 展开更多
关键词 optical communications optical signal processing channel descrambling optical neural network chip silicon photonics
下载PDF
Possible roles of electrical synapse in temporal information processing: A computational study
3
作者 Xu-Long Wang Xiao-Dong Jiang Pei-Ji Liang 《Journal of Biomedical Science and Engineering》 2008年第1期27-36,共10页
Temporal information processing in the range of tens to hundreds of milliseconds is critical in many forms of sensory and motor tasks. However, little has been known about the neural mechanisms of temporal information... Temporal information processing in the range of tens to hundreds of milliseconds is critical in many forms of sensory and motor tasks. However, little has been known about the neural mechanisms of temporal information processing. Experimental observations indicate that sensory neurons of the nervous system do not show selective response to temporal properties of external stimuli. On the other hand, temporal selective neurons in the cortex have been reported in many species. Thus, processes which realize the temporal-to-spatial transformation of neuronal activities might be required for temporal information processing. In the present study, we propose a computational model to explore possible roles of electrical synapses in processing the duration of external stimuli. Firstly, we construct a small-scale network with neurons interconnected by electrical synapses in addition to chemical synapses. Basic properties of this small-scale neural network in processing duration information are analyzed. Secondly, a large-scale neural network which is more biologically realistic is further explored. Our results suggest that neural networks with electrical synapses functioning together with chemical synapses can effectively work for the temporal-to-spatial transformation of neuronal activities, and the spatially distributed sequential neural activities can potentially represent temporal information. 展开更多
关键词 model neural network electrical SYNAPSE TEMPORAL information processing
下载PDF
Application of graph neural network and feature information enhancement in relation inference of sparse knowledge graph
4
作者 Hai-Tao Jia Bo-Yang Zhang +4 位作者 Chao Huang Wen-Han Li Wen-Bo Xu Yu-Feng Bi Li Ren 《Journal of Electronic Science and Technology》 EI CAS CSCD 2023年第2期44-54,共11页
At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production ... At present,knowledge embedding methods are widely used in the field of knowledge graph(KG)reasoning,and have been successfully applied to those with large entities and relationships.However,in research and production environments,there are a large number of KGs with a small number of entities and relations,which are called sparse KGs.Limited by the performance of knowledge extraction methods or some other reasons(some common-sense information does not appear in the natural corpus),the relation between entities is often incomplete.To solve this problem,a method of the graph neural network and information enhancement is proposed.The improved method increases the mean reciprocal rank(MRR)and Hit@3 by 1.6%and 1.7%,respectively,when the sparsity of the FB15K-237 dataset is 10%.When the sparsity is 50%,the evaluation indexes MRR and Hit@10 are increased by 0.8%and 1.8%,respectively. 展开更多
关键词 Feature information enhancement Graph neural network Natural language processing Sparse knowledge graph(KG)inference
下载PDF
用于光学信息处理的WTA电子网络的实现及其特性分析
5
作者 申金媛 丁铁英 《光电工程》 CAS CSCD 1998年第2期29-33,共5页
给出了一种光信号处理用WTA电子网络的实现方法,测试了网络的灵敏度,并分析了可能对其产生影响的因素,制作了32单元的WTA网络器件。网络能在几百微秒的时间内找出输入最大者,分辨精度为1mV。
关键词 神经网络 wta网络 光学信息处理
下载PDF
WiFi CSI Gesture Recognition Based on Parallel LSTM-FCN Deep Space-Time Neural Network 被引量:2
6
作者 Zhiling Tang Qianqian Liu +2 位作者 Minjie Wu Wenjing Chen Jingwen Huang 《China Communications》 SCIE CSCD 2021年第3期205-215,共11页
In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases consi... In this study,we developed a system based on deep space–time neural networks for gesture recognition.When users change or the number of gesture categories increases,the accuracy of gesture recognition decreases considerably because most gesture recognition systems cannot accommodate both user differentiation and gesture diversity.To overcome the limitations of existing methods,we designed a onedimensional parallel long short-term memory–fully convolutional network(LSTM–FCN)model to extract gesture features of different dimensions.LSTM can learn complex time dynamic information,whereas FCN can predict gestures efficiently by extracting the deep,abstract features of gestures in the spatial dimension.In the experiment,50 types of gestures of five users were collected and evaluated.The experimental results demonstrate the effectiveness of this system and robustness to various gestures and individual changes.Statistical analysis of the recognition results indicated that an average accuracy of approximately 98.9% was achieved. 展开更多
关键词 signal and information processing parallel LSTM-FCN neural network deep learning gesture recognition wireless channel state information
下载PDF
A Self-Organizing RBF Neural Network Based on Distance Concentration Immune Algorithm 被引量:4
7
作者 Junfei Qiao Fei Li +2 位作者 Cuili Yang Wenjing Li Ke Gu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期276-291,共16页
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis... Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors. 展开更多
关键词 Distance concentration immune algorithm(DCIA) information processing strength(IPS) radial basis function neural network(RBFNN)
下载PDF
TIME SERIES NEURAL NETWORK FORECASTING METHODS
8
作者 文新辉 陈开周 《Journal of Electronics(China)》 1995年第1期1-8,共8页
This paper has discussed the possibility and key problem to construct the neural network time series model, and three time series neural network forecasting methods has been proposed, i. e. a neural network nonlinear ... This paper has discussed the possibility and key problem to construct the neural network time series model, and three time series neural network forecasting methods has been proposed, i. e. a neural network nonlinear time series model, a neural network multi-dimension time series model and a neural network combining predictive model. These three methods are applied to real problems. The results show that these methods are better than the traditional one. Furthermore, the neural network methods are compared with the traditional method, and the constructed model of intellectual information forecasting system is given. 展开更多
关键词 information THEORY information processing neural NETWORK forecasting METHOD
下载PDF
A Self-Organizing Memory Neural Network for Aerosol Concentration Prediction
9
作者 Qiang Liu Yanyun Zou Xiaodong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第6期617-637,共21页
Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5... Haze-fog,which is an atmospheric aerosol caused by natural or man-made factors,seriously affects the physical and mental health of human beings.PM2.5(a particulate matter whose diameter is smaller than or equal to 2.5 microns)is the chief culprit causing aerosol.To forecast the condition of PM2.5,this paper adopts the related the meteorological data and air pollutes data to predict the concentration of PM2.5.Since the meteorological data and air pollutes data are typical time series data,it is reasonable to adopt a machine learning method called Single Hidden-Layer Long Short-Term Memory Neural Network(SSHL-LSTMNN)containing memory capability to implement the prediction.However,the number of neurons in the hidden layer is difficult to decide unless manual testing is operated.In order to decide the best structure of the neural network and improve the accuracy of prediction,this paper employs a self-organizing algorithm,which uses Information Processing Capability(IPC)to adjust the number of the hidden neurons automatically during a learning phase.In a word,to predict PM2.5 concentration accurately,this paper proposes the SSHL-LSTMNN to predict PM2.5 concentration.In the experiment,not only the hourly precise prediction but also the daily longer-term prediction is taken into account.At last,the experimental results reflect that SSHL-LSTMNN performs the best. 展开更多
关键词 Haze-fog PM2.5 forecasting time series data machine learning long shortterm MEMORY neural network SELF-ORGANIZING algorithm information processing CAPABILITY
下载PDF
基于物理信息神经网络的牵引变流器直流支撑电容参数辨识方法
10
作者 向超群 尹雪瑶 +2 位作者 伍珣 曹忠林 刘元才 《电工技术学报》 EI CSCD 北大核心 2024年第15期4654-4667,共14页
为了解决车载牵引变流系统直流支撑电容器故障预测问题,该文提出一种基于物理信息神经网络的直流支撑电容器参数辨识方法。该方法只需要利用直流环节预充电过程的直流支撑电容器两端电压及采样频率,无需拟合曲线,无需严格对齐时间轴就... 为了解决车载牵引变流系统直流支撑电容器故障预测问题,该文提出一种基于物理信息神经网络的直流支撑电容器参数辨识方法。该方法只需要利用直流环节预充电过程的直流支撑电容器两端电压及采样频率,无需拟合曲线,无需严格对齐时间轴就可以获得较为准确的电容参数辨识结果。与此同时,为了克服在采集数据时因条件所限造成的数据量稀疏与分布不均问题,该文利用循环一致性生成对抗网络算法增强数据,使该方法可以适用于同一拓扑下宽范围电容区间的电容容值预测,降低了模型训练要求。实验结果表明:在正常条件下,该方法的辨识相对误差约在1%以下,并且降低采样频率能够缓解信噪比对该方法的影响。该方法为解决直流支撑电容参数辨识问题提供了新思路。 展开更多
关键词 直流支撑电容器 参数辨识 物理信息神经网络 循环一致性生成对抗网络 直流 环节预充电工况
下载PDF
人工神经网络在实现猪精准饲养模式中的应用研究进展 被引量:1
11
作者 扣泽华 宋志锋 +3 位作者 范越蠡 刘博 车东升 韩蕊 《黑龙江畜牧兽医》 CAS 北大核心 2024年第4期29-35,42,共8页
目前,对集约化猪养殖中产生的大量生产数据的高效分析与合理运用是推动我国生猪产业精准化和智能化发展的关键步骤。人工神经网络(artificial neural network,ANN)的自学习、联想存储、高速寻找优化解等特征在进行大数据信息处理时具有... 目前,对集约化猪养殖中产生的大量生产数据的高效分析与合理运用是推动我国生猪产业精准化和智能化发展的关键步骤。人工神经网络(artificial neural network,ANN)的自学习、联想存储、高速寻找优化解等特征在进行大数据信息处理时具有显著优势,在猪生产领域具有极高的应用潜力。笔者以具有单隐藏层的三层误差反向传播前馈人工神经网络(back propagation-aritificial neural network BP-ANN)为代表,对ANN的结构特点及其在猪行为与健康监测、胴体性状与肉品质估测和猪生长速率调控与日粮原料营养价值预测等方面的应用成果进行综述,从生产管理和营养调控两方面展望ANN在未来猪精准饲养模式中的应用前景,为实现科学化、智能化和数字化管理模式下的猪精准养殖业提供理论参考。 展开更多
关键词 人工神经网络 猪精准饲养 信息处理 应用 生产管理 营养调控
下载PDF
融合三维人脸动态信息和光流信息的人脸表情识别
12
作者 张华忠 潘曰凯 +3 位作者 涂晓光 刘建华 许罗鹏 周超 《计算机科学》 CSCD 北大核心 2024年第S01期594-600,共7页
人脸表情识别在静态图像上取得了卓越的成效,但这些方法应用于视频或图像序列时,准确度和鲁棒性往往会受到影响。传统的方法通常无法基于空间信息和光流信息进行人脸表情的识别,然而这些辅助识别信息都是二维信息,没有考虑到人脸的表情... 人脸表情识别在静态图像上取得了卓越的成效,但这些方法应用于视频或图像序列时,准确度和鲁棒性往往会受到影响。传统的方法通常无法基于空间信息和光流信息进行人脸表情的识别,然而这些辅助识别信息都是二维信息,没有考虑到人脸的表情变化是一种三维的变化过程。为充分挖掘人脸表情识别的深层语义信息,提出了一种基于三维人脸动态信息和光流信息相结合的融合表情识别方法。该方法构建基于人脸深度图像、光流图像和RGB图像的多流卷积神经网络,通过融合3种模态的信息进行人脸表情识别。所提方法在CAER,RAVDESS数据集上进行了充分验证,实验结果表明,其在表情识别性能上优于目前的主流方法,证明了其有效性。 展开更多
关键词 表情识别 多流卷积神经网络 三维人脸动态信息 光流信息
下载PDF
基于多级语义对齐的图像-文本匹配算法
13
作者 李艺茹 姚涛 +2 位作者 张林梁 孙玉娟 付海燕 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期551-558,共8页
图像中的区域特征更关注于图像中的前景信息,背景信息往往被忽略,如何有效的联合局部特征和全局特征还没有得到充分地研究。为解决上述问题,加强全局概念和局部概念之间的关联得到更准确的视觉特征,提出一种基于多级语义对齐的图像-文... 图像中的区域特征更关注于图像中的前景信息,背景信息往往被忽略,如何有效的联合局部特征和全局特征还没有得到充分地研究。为解决上述问题,加强全局概念和局部概念之间的关联得到更准确的视觉特征,提出一种基于多级语义对齐的图像-文本匹配算法。提取局部图像特征,得到图像中的细粒度信息;提取全局图像特征,将环境信息引入到网络的学习中,从而得到不同的视觉关系层次,为联合的视觉特征提供更多的信息;将全局-局部图像特征进行联合,将联合后的视觉特征和文本特征进行全局-局部对齐得到更加精准的相似度表示。通过大量的实验和分析表明:所提算法在2个公共数据集上具有有效性。 展开更多
关键词 图像-文本匹配 跨模态信息处理 特征提取 神经网络 特征融合
下载PDF
生物氧化预处理过程pH值随机分布控制方法研究
14
作者 赵雅儒 高丙朋 《传感器与微系统》 CSCD 北大核心 2024年第8期56-59,63,共5页
生物氧化预处理过程中氧化槽pH值是影响细菌活性的关键因素之一,而pH值输出形态分布不符合高斯分布,使传统的均值和方差难以描述输出pH值分布,本文提出一种对矿浆输出pH的概率密度函数(PDF)统计信息控制方法。首先,采用B样条逼近矿浆输... 生物氧化预处理过程中氧化槽pH值是影响细菌活性的关键因素之一,而pH值输出形态分布不符合高斯分布,使传统的均值和方差难以描述输出pH值分布,本文提出一种对矿浆输出pH的概率密度函数(PDF)统计信息控制方法。首先,采用B样条逼近矿浆输出pH值的PDF统计信息;其次,针对权值向量之间的关系,利用动态神经网络(DNN)建立控制输入和权值向量之间的非线性动态模型,基于建立pH的PDF统计信息权值模型,设计滑模变结构控制器,通过构造Lyapunov函数进行稳定性分析;最后,实现输出PDF统计信息对目标PDF统计信息的跟踪。仿真结果验证了所提方法的有效性,为生物氧化预处理过程提供了新方法。 展开更多
关键词 氧化预处理过程 pH随机分布 B样条模型 概率密度函数统计信息 动态神经网络 滑模控制
下载PDF
基于用户偏好评分值修正的深度神经网络推荐模型
15
作者 田磊 易辉 +1 位作者 陈晨子 缪小冬 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2486-2494,共9页
针对工业产业链上下游产品选购中用户对产品评分习惯差异较大的问题,结合用户评分习惯提出修正算法,构建一种基于用户偏好评分值修正的深度神经网络推荐模型(UPDNN)。该方法首先通过历史数据对各用户评分偏好进行学习,设计特有的满意度... 针对工业产业链上下游产品选购中用户对产品评分习惯差异较大的问题,结合用户评分习惯提出修正算法,构建一种基于用户偏好评分值修正的深度神经网络推荐模型(UPDNN)。该方法首先通过历史数据对各用户评分偏好进行学习,设计特有的满意度投影函数将用户评分投影至满意度空间进行修正,然后在满意度空间中通过深度神经网络进行推荐模型训练和待测产品满意度预测,最终给出用户的Top-k推荐产品表,实现产品推荐。实验结果表明,UPDNN较经典推荐算法在Movielens数据集上的推荐结果更贴合用户喜好,验证了所提方法的有效性。 展开更多
关键词 评分值修正 深度神经网络 信息提取 特征处理
下载PDF
基于果蝇视觉神经网络的单目标运动检测与跟踪
16
作者 王德铖 张著洪 《智能计算机与应用》 2024年第4期1-11,共11页
运动目标跟踪因对实时输入信息的处理、跟踪模型的性能有较高要求,使得对应用性较强的目标跟踪模型的构建仍然是较为活跃的研究重点。针对单目标跟踪问题,基于果蝇视觉信息处理机制及目标跟踪具有的固有特征,本文提出不同于现有目标跟... 运动目标跟踪因对实时输入信息的处理、跟踪模型的性能有较高要求,使得对应用性较强的目标跟踪模型的构建仍然是较为活跃的研究重点。针对单目标跟踪问题,基于果蝇视觉信息处理机制及目标跟踪具有的固有特征,本文提出不同于现有目标跟踪模型的新型模型。模型设计中,基于果蝇视觉信息处理机制建立改进型前馈果蝇视觉神经网络,进而借助其输出的运动方向量矩阵及运动目标的固有运动特性,构建运动目标的运动方向检测以及位置、速度、偏航角估计模型,由此获得计算复杂度由输入图像的分辨率确定的前馈果蝇视觉目标跟踪模型。比较性的实验表明,相较于经典的和基于深度学习的目标跟踪模型,所获新型目标跟踪模型在多种指标下具有实时处理能力强、跟踪效果好且有较好应用潜力的优点,为目标跟踪研究提供了又一新的解决方案。 展开更多
关键词 运动方向检测 单目标跟踪 果蝇视觉信息处理机制 前馈果蝇视觉神经网络
下载PDF
融合单词级段信息的中文医疗命名实体识别
17
作者 王海鹏 杜方 +1 位作者 宋丽娟 李婷 《计算机技术与发展》 2024年第6期110-117,共8页
中文医疗命名实体识别(Named Entity Recognition,NER)是医学领域的一项基础任务,在知识图谱等许多下游任务中起着重要的作用。常用的NER方法可分为基于词级信息和基于段级信息,已有研究表明两种信息融合能取得更好的性能。目前,词级信... 中文医疗命名实体识别(Named Entity Recognition,NER)是医学领域的一项基础任务,在知识图谱等许多下游任务中起着重要的作用。常用的NER方法可分为基于词级信息和基于段级信息,已有研究表明两种信息融合能取得更好的性能。目前,词级信息和段级信息融合的方法在中文医疗NER任务中还未被充分研究,且现有的融合方法为段中的每个单词赋予相同的权重,不考虑单词的不同贡献。而医疗实体中每个单词和实体(段)有着不同的相关性,忽略这种相关性的差异将影响医疗NER的性能。基于此,通过分析中文医疗实体特性,提出了一种单词级段信息抽取方法(Word-Level Segment Information Extraction,WL-SIE)。该方法为实体中的每个单词分配一个权重矩阵集,学习单词与实体之间的关联信息,在与实体词组交互之后输出不同的单词级段信息。在CCKS2017和CMeEE中文临床NER数据集上的实验结果表明,WL-SIE方法较对比方法在F1值上提升了3%~5%,特别是在实体样本不均衡场景下和长实体识别任务上表现出了优异的性能。 展开更多
关键词 命名实体识别 深度神经网络 词级信息 段级信息 中文医疗信息处理
下载PDF
基于高光谱的番茄氮磷钾营养水平快速诊断 被引量:34
18
作者 刘红玉 毛罕平 +2 位作者 朱文静 张晓东 高洪燕 《农业工程学报》 EI CAS CSCD 北大核心 2015年第S1期212-220,共9页
为了精确、快速和稳定的对番茄氮、磷、钾3种元素的营养水平进行诊断,该文提出利用反射光谱技术诊断方法,选用遗传算法优选波段;采用主成分分析方法提取敏感波长下的纹理特征;通过逐步回归、主成分回归、偏最小二乘法回归分别建立基于... 为了精确、快速和稳定的对番茄氮、磷、钾3种元素的营养水平进行诊断,该文提出利用反射光谱技术诊断方法,选用遗传算法优选波段;采用主成分分析方法提取敏感波长下的纹理特征;通过逐步回归、主成分回归、偏最小二乘法回归分别建立基于光谱和图像特征的番茄叶片氮、磷、钾素模型。针对单一技术不能全面反映叶片营养信息的问题,采用人工神经网络对光谱和图像技术进行特征层的信息融合,建立了多信息融合的诊断模型,求得氮、磷、钾的相关系数R分别为0.9651、0.9216、0.9353;均方根误差RMSE分别为0.19、0.33、0.29。结果表明采用光谱与图像的融合技术模型比单一光谱模型提高的精度分别为6.25%、3.97%、7.92%,比单一图像模型提高的精度为3.80%、5.43%、3.26%,有更好的诊断作用,能够实现对番茄作物氮、磷、钾素营养水平的高精度快速检测。 展开更多
关键词 图像处理 光谱分析 信息融合 人工神经网络 番茄叶片 氮、磷、钾
下载PDF
基于电子鼻的鱼类新鲜度估计研究 被引量:19
19
作者 刘红秀 李洪波 +1 位作者 李卫东 骆德汉 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期28-30,36,共4页
以新西兰市场上最受欢迎的四类鱼(红甲鱼、鲂鱼、唇指鲈和(澳洲)鲹)为对象研究鱼的新鲜度。在同一实验室环境下,运用便携式电子鼻Cyranose 320测量这四类鱼被储藏第1,2,5,6,7,8,9,10(第3,4天的未测量)天后对应的同一样品,每个样品测量... 以新西兰市场上最受欢迎的四类鱼(红甲鱼、鲂鱼、唇指鲈和(澳洲)鲹)为对象研究鱼的新鲜度。在同一实验室环境下,运用便携式电子鼻Cyranose 320测量这四类鱼被储藏第1,2,5,6,7,8,9,10(第3,4天的未测量)天后对应的同一样品,每个样品测量一次对应每个传感器平均采样2000个左右数据,获得大约2.048×106[4(鱼)×8(天)×32(传感器)×2 000(采样)=2 048 000]个数据。将实验数据进行特征提取及人工神经网络(ANN)分析处理,得到传感器对每类鱼每天的响应模式,进而估计鱼的新鲜度,获得了91%以上的正确识别率。研究结果表明该方法是实用可行的。 展开更多
关键词 电子鼻 信息处理 神经网络 鱼的新鲜度估计
下载PDF
神经网络在文本分类上的一种应用 被引量:13
20
作者 刘钢 胡四泉 +2 位作者 范植华 王勇 张彤 《计算机工程与应用》 CSCD 北大核心 2003年第36期73-74,92,共3页
现有的文本分类方法在知识获取方面存在不足。该文针对某种应用需求,提出了人工神经网络和文本分类结合的一种文本分类方法。采用特征词的向量空间来描述文本,利用人工神经网络的良好的学习能力,通过对文本样本集进行训练,从中提取出对... 现有的文本分类方法在知识获取方面存在不足。该文针对某种应用需求,提出了人工神经网络和文本分类结合的一种文本分类方法。采用特征词的向量空间来描述文本,利用人工神经网络的良好的学习能力,通过对文本样本集进行训练,从中提取出对文本分类的知识,再利用神经网络和所获得的分类知识实现对文本的分类。 展开更多
关键词 文本分类 神经网络 知识获取 信息处理 信息过滤 计算机
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部