期刊文献+
共找到1,244篇文章
< 1 2 63 >
每页显示 20 50 100
The Complex System Modeling Method Based on Uniform Design and Neural Network 被引量:1
1
作者 Zhang Yong(Beijing Simulation Center, P.O.Box 142-23, Beijing 100854, P.R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第4期27-36,共10页
In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the model... In this paper, the method based on uniform design and neural network is proposed to model the complex system. In order to express the system characteristics all round, uniform design method is used to choose the modeling samples and obtain the overall information of the system;for the purpose of modeling the system or its characteristics, the artificial neural network is used to construct the model. Experiment indicates that this method can model the complex system effectively. 展开更多
关键词 modeling method Uniform design neural network complex system Simulation.
下载PDF
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
2
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 complex system modeling General stochastic neural network MTS fuzzy model Expectation-maximization algorithm
下载PDF
Constructing reduced model for complex physical systems via interpolation and neural networks
3
作者 Xuefang Lai Xiaolong Wang Yufeng Nie 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期78-87,共10页
The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approxima... The work studies model reduction method for nonlinear systems based on proper orthogonal decomposition (POD)and discrete empirical interpolation method (DEIM). Instead of using the classical DEIM to directly approximate thenonlinear term of a system, our approach extracts the main part of the nonlinear term with a linear approximation beforeapproximating the residual with the DEIM. We construct the linear term by Taylor series expansion and dynamic modedecomposition (DMD), respectively, so as to obtain a more accurate reconstruction of the nonlinear term. In addition, anovel error prediction model is devised for the POD-DEIM reduced systems by employing neural networks with the aid oferror data. The error model is cheaply computable and can be adopted as a remedy model to enhance the reduction accuracy.Finally, numerical experiments are performed on two nonlinear problems to show the performance of the proposed method. 展开更多
关键词 model reduction discrete empirical interpolation method dynamic mode decomposition neural networks
下载PDF
Dynamics Modeling and Robust Trajectory Tracking Control for a Class of Hybrid Humanoid Arm Based on Neural Network 被引量:4
4
作者 WANG Yueling JIN Zhenlin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第3期355-363,共9页
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from mo... In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control. 展开更多
关键词 hybrid humanoid arm dynamic modeling neural network adaptive control trajectory tracking
下载PDF
Evaluation of a mathematical model using experimental data and artificial neural network for prediction of gas separation 被引量:1
5
作者 M.Peer M.Mahdyarfar T.Mohammadi 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期135-141,共7页
In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of memb... In recent times, membranes have found wide applications in gas separation processes. As most of the industrial membrane separation units use hollow fiber modules, having a proper model for simulating this type of membrane module is very useful in achieving guidelines for design and characterization of membrane separation units. In this study, a model based on Coker, Freeman, and Fleming's study was used for estimating the required membrane area. This model could simulate a multicomponent gas mixture separation by solving the governing differential mass balance equations with numerical methods. Results of the model were validated using some binary and multicomponent experimental data from the literature. Also, the artificial neural network (ANN) technique was applied to predict membrane gas separation behavior and the results of the ANN simulation were compared with the simulation results of the model and the experimental data. Good consistency between these results shows that ANN method can be successfully used for prediction of the separation behavior after suitable training of the network 展开更多
关键词 hollow fiber membrane gas separation mathematical modeling artificial neural network
下载PDF
Predicting Model for Complex Production Process Based on Dynamic Neural Network 被引量:1
6
作者 许世范 王雪松 郝继飞 《Journal of China University of Mining and Technology》 2001年第1期20-23,共4页
Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutua... Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process. 展开更多
关键词 dynamic neural network Elman network complex production process predicting model
下载PDF
Neural Network Modeling and System Simulating for the Dynamic Process of Varied Gap Pulsed GTAW with Wire Filler
7
作者 Guangjun ZHANG Shanben CHEN Lin WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期515-520,共6页
As the base of the research work on the weld shape control during pulsed gas tungsten arc welding (GTAW) with wire filler, this paper addressed the modeling of the dynamic welding process. Topside length Lt, maximum... As the base of the research work on the weld shape control during pulsed gas tungsten arc welding (GTAW) with wire filler, this paper addressed the modeling of the dynamic welding process. Topside length Lt, maximum width Wt and half-length ratio Rh1 were selected to depict topside weld pool shape, and were measured on-line by vision sensing. A dynamic neural network model was constructed to predict the usually unmeasured backside width and topside height of the weld through topside shape parameters and welding parameters. The inputs of the model were the welding parameters (peak current, pulse duty ratio, welding speed, filler rate), the joint gap, the topside pool shape parameters (Lt, Wt, and Rh1), and their history values at two former pulse, a total of 24 numbers. The validating experiment results proved that the artificial neural network (ANN) model had high precision and could be used in process control. At last, with the developed dynamic model, steady and dynamic behavior was analyzed by simulation experiments, which discovered the variation rules of weld pool shape parameters under different welding parameters, and further knew well the characteristic of the welding process. 展开更多
关键词 modeling neural network Dynamic welding process Pulsed GTAW
下载PDF
Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems
8
作者 Farouk Zouari Kamel Ben Saad Mohamed Benrejeb 《Journal of Software Engineering and Applications》 2012年第4期225-248,共24页
In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-o... In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method. 展开更多
关键词 complex DYNAMICAL systems LYAPUNOV Approach RECURRENT neural networks Adaptive Control
下载PDF
Identification of Artificial Neural Network Models for Three-Dimensional Simulation of a Vibration-Acoustic Dynamic System
9
作者 Robson S.Magalhaes Cristiano H.O.Fontes +1 位作者 Luiz A.L.de Almeida Marcelo Embirucu 《Open Journal of Acoustics》 2013年第1期14-24,共11页
Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffle... Industrial noise can be successfully mitigated with the combined use of passive and Active Noise Control (ANC) strategies. In a noisy area, a practical solution for noise attenuation may include both the use of baffles and ANC. When the operator is required to stay in movement in a delimited spatial area, conventional ANC is usually not able to adequately cancel the noise over the whole area. New control strategies need to be devised to achieve acceptable spatial coverage. A three-dimensional actuator model is proposed in this paper. Active Noise Control (ANC) usually requires a feedback noise measurement for the proper response of the loop controller. In some situations, especially where the real-time tridimensional positioning of a feedback transducer is unfeasible, the availability of a 3D precise noise level estimator is indispensable. In our previous works [1,2], using a vibrating signal of the primary source of noise as an input reference for spatial noise level prediction proved to be a very good choice. Another interesting aspect observed in those previous works was the need for a variable-structure linear model, which is equivalent to a sort of a nonlinear model, with unknown analytical equivalence until now. To overcome this in this paper we propose a model structure based on an Artificial Neural Network (ANN) as a nonlinear black-box model to capture the dynamic nonlinear behaveior of the investigated process. This can be used in a future closed loop noise cancelling strategy. We devise an ANN architecture and a corresponding training methodology to cope with the problem, and a MISO (Multi-Input Single-Output) model structure is used in the identification of the system dynamics. A metric is established to compare the obtained results with other works elsewhere. The results show that the obtained model is consistent and it adequately describes the main dynamics of the studied phenomenon, showing that the MISO approach using an ANN is appropriate for the simulation of the investigated process. A clear conclusion is reached highlighting the promising results obtained using this kind of modeling for ANC. 展开更多
关键词 neural networks Nonlinear Identification Dynamic models Distributed Parameter systems Vibrate-Acoustic systems
下载PDF
Nonlinear Systems Identification via an Input-Output Model Based on a Feedforward Neural Network
10
作者 O. L. Shuai South China University of Technology, Gungzhou, 510641, P.R. China S. C. Zhou S. K. Tso T. T. Wong T.P. Leung The Hong Kong Polytechnic University, HungHom, Kowloon, HK 《International Journal of Plant Engineering and Management》 1997年第4期45-50,共6页
This paper develops a feedforward neural network based input output model for a general unknown nonlinear dynamic system identification when only the inputs and outputs are accessible observations. In the developed m... This paper develops a feedforward neural network based input output model for a general unknown nonlinear dynamic system identification when only the inputs and outputs are accessible observations. In the developed model, the size of the input space is directly related to the system order. By monitoring the identification error characteristic curve, we are able to determine the system order and subsequently an appropriate network structure for systems identification. Simulation results are promising and show that generic nonlinear systems can be identified, different cases of the same system can also be discriminated by our model. 展开更多
关键词 nonlinear dynamic systems identification neural networks based Input Output model identification error characteristic curve
下载PDF
THE MODEL VALIDATION OF DYNAMIC NEURAL NETWORKS
11
作者 李秀娟 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第2期185-189,共5页
This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-i... This paper investigates the problem of the model validation in identifying discrete-time-nonlinear dynamic systems by using neural networks with a single hidden layer.Based on the estimation theory,a synthetic error-index(SEI)criterion for the neural network models has been developed.By using the powerful training algorithm of recursive prediction error (RPE),two simulated non-linear systems are studied,and the results show that the synthetic error-index criterion can be used to verify the dynamic neural network models.Furthermore,the proposed technique is much simple in calculation than that of the effective correlation tests.Finally,some problems required by further study are discussed. 展开更多
关键词 neural networks dynamic models non-linear systems odel validation system identification
下载PDF
Modeling of Ship Maneuvering Motion Using Neural Networks 被引量:13
12
作者 Weilin Luo Zhicheng Zhang 《Journal of Marine Science and Application》 CSCD 2016年第4期426-432,共7页
In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverabil... In this paper, Neural Networks (NNs) are used in the modeling of ship maneuvering motion. A nonlinear response model and a linear hydrodynamic model of ship maneuvering motion are also investigated. The maneuverability indices and linear non-dimensional hydrodynamic derivatives in the models are identified by using two-layer feed forward NNs. The stability of parametric estimation is confirmed. Then, the ship maneuvering motion is predicted based on the obtained models. A comparison between the predicted results and the model test results demonstrates the validity of the proposed modeling method. 展开更多
关键词 ship maneuvering response models mathematical modeling group model system identification neural networks
下载PDF
A dynamic epidemic control model on uncorrelated complex networks 被引量:4
13
作者 裴伟东 陈增强 袁著社 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第2期373-379,共7页
In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptib... In this paper, a dynamic epidemic control model on the uncorrelated complex networks is proposed. By means of theoretical analysis, we found that the new model has a similar epidemic threshold as that of the susceptible-infectedrecovered (SIR) model on the above networks, but it can reduce the prevalence of the infected individuals remarkably. This result may help us understand epidemic spreading phenomena on real networks and design appropriate strategies to control infections. 展开更多
关键词 complex networks dynamic quarantining mechanism QSIR model epidemic threshold
下载PDF
A Neural-network-based Alternative Scheme to Include Nonhydrostatic Processes in an Atmospheric Dynamical Core
14
作者 Yang XIA Bin WANG +13 位作者 Lijuan LI Li LIU Jianghao LI Li DONG Shiming XU Yiyuan LI Wenwen XIA Wenyu HUANG Juanjuan LIU Yong WANG Hongbo LIU Ye PU Yujun HE Kun XIA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1083-1099,I0002,I0003,共19页
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat... Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme. 展开更多
关键词 neural network nonhydrostatic alternative scheme atmospheric model dynamical core
下载PDF
Dynamic Coordination of Uncalibrated Hand/Eye Robotic System Based on Neural Network 被引量:1
15
作者 Su, J. Pan, Q. Xi, Y. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期45-50,共6页
A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation ... A nonlinear visual mapping model is presented to replace the image Jacobian relation for uncalibrated hand/eye coordination. A new visual tracking controller based on artificial neural network is designed. Simulation results show that this method can drive the static tracking error to zero quickly and keep good robustness and adaptability at the same time. In addition, the algorithm is very easy to be implemented with low computational complexity. 展开更多
关键词 Adaptive algorithms Computational complexity Computer simulation Coordinate measuring machines Error detection mathematical models neural networks Robotic arms Robustness (control systems) Stereo vision
下载PDF
Modeling and analysis of the ocean dynamic with Gaussian complex network 被引量:1
16
作者 Xin Sun Yongbo Yu +3 位作者 Yuting Yang Junyu Dong Christian Bohm Xueen Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期588-597,共10页
The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global... The techniques for oceanographic observation have made great progress in both space-time coverage and quality, which make the observation data present some characteristics of big data. We explore the essence of global ocean dynamic via constructing a complex network with regard to sea surface temperature. The global ocean is divided into discrete regions to represent the nodes of the network. To understand the ocean dynamic behavior, we introduce the Gaussian mixture models to describe the nodes as limit-cycle oscillators. The interacting dynamical oscillators form the complex network that simulates the ocean as a stochastic system. Gaussian probability matching is suggested to measure the behavior similarity of regions. Complex network statistical characteristics of the network are analyzed in terms of degree distribution, clustering coefficient and betweenness. Experimental results show a pronounced sensitivity of network characteristics to the climatic anomaly in the oceanic circulation. Particularly, the betweenness reveals the main pathways to transfer thermal energy of El Niño–Southern oscillation. Our works provide new insights into the physical processes of ocean dynamic, as well as climate changes and ocean anomalies. 展开更多
关键词 complex networks ocean dynamic Gaussian mixture model physical processes
下载PDF
DOWNSCALING FORECAST OF MONTHLY PRECIPITATION OVER GUANGXI BASED ON BP NEURAL NETWORK MODEL 被引量:1
17
作者 何慧 金龙 +1 位作者 覃志年 袁丽军 《Journal of Tropical Meteorology》 SCIE 2007年第1期97-100,共4页
Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geop... Variables fields such as enstrophy, meridional-wind and zonal-wind variables are derived from monthly 500 hPa geopotential height anomalous fields. In this work, we select original predictors from monthly 500-hPa geopotential height anomalous fields and their variables in June of 1958 - 2001, and determine comprehensive predictors by conducting empirical orthogonal function (EOF) respectively with the original predictors. A downscaling forecast model based on the back propagation (BP) neural network is built by use of the comprehensive predictors to predict the monthly precipitation in June over Guangxi with the monthly dynamic extended range forecast products. For comparison, we also build another BP neural network model with the same predictands by using the former comprehensive predictors selected from 500-hPa geopotential height anomalous fields in May to December of 1957 - 2000 and January to April of 1958 - 2001. The two models are tested and results show that the precision of superposition of the downscaling model is better than that of the one based on former comprehensive predictors, but the prediction accuracy of the downscaling model depends on the output of monthly dynamic extended range forecast. 展开更多
关键词 monthly dynamic extended range forecast neural network model downsealing forecast prediction error
下载PDF
A REALISTIC MODEL OF NEURAL NETWORKS
18
作者 顾凡及 李训经 阮炯 《Journal of Electronics(China)》 1992年第4期289-295,共7页
A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initi... A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initial segment graded potentials and the impulsetrain along the axon respectively.To solve the equations numerically,a recurrent algorithm and itscorresponding flow chart was also developed.The simulation results can imitate adaptation,post-excitation inhibition,and phase locking of sensory receptors;they can also imitate the transientresponses of lateral inhibitory network and Mach band phenomenon when they trended to besteady.The simulation results also showed that the lateral inhibitory network was sensitive tomoving objects. 展开更多
关键词 neural network REALISTIC model RECURRENT algorithm Simulation Dynamic PROPERTY
下载PDF
Neural network modeling for dynamic pulsed GTAW process with wire filler based on MATLAB
19
作者 赵冬斌 陈善本 +1 位作者 吴林 陈强 《China Welding》 EI CAS 2001年第2期10-15,共6页
Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modelin... Double-sided weld pool shapes were determined by multiple welding parameters and wire feed parameters during pulsed GTAW with wire filler. Aiming at such a system with multiple inputs and outputs, an effective modeling method, consisting of the impulse signal design, model structure and parameter identification and verification, was developed based on MATLAB software. Then, dynamic neural network models, TDNNM (Topside dynamic neural network model) and BHDNNM (Backside width and topside height dynamic neural network model), were established to predict double-sided shape parameters of the weld pool. The characteristic relationship of the welding process was simulated and analyzed with the models. 展开更多
关键词 GTAW with wire filler dynamic process modeling neural network MATLAB
下载PDF
Self-Constructing Neural Network Modeling and Control of an AGV
20
作者 Jafar Keighobadi Khadijeh Alioghli Fazeli Mohammad Sadeghi Shahidi 《Positioning》 2013年第2期160-168,共9页
Tracking precision of pre-planned trajectories is essential for an auto-guided vehicle (AGV). The purpose of this paper is to design a self-constructing wavelet neural network (SCWNN) method for dynamical modeling and... Tracking precision of pre-planned trajectories is essential for an auto-guided vehicle (AGV). The purpose of this paper is to design a self-constructing wavelet neural network (SCWNN) method for dynamical modeling and control of a 2-DOF AGV. In control systems of AGVs, kinematical models have been preferred in recent research documents. However, in this paper, to enhance the trajectory tracking performance through including the AGV’s inertial effects in the control system, a learned dynamical model is replaced to the kinematical kind. As the base of a control system, the mathematical models are not preferred due to modeling uncertainties and exogenous inputs. Therefore, adaptive dynamic and control models of AGV are proposed using a four-layer SCWNN system comprising of the input, wavelet, product, and output layers. By use of the SCWNN, a robust controller against uncertainties is developed, which yields the perfect convergence of AGV to reference trajectories. Owing to the adaptive structure, the number of nodes in the layers is adjusted in online and thus the computational burden of the neural network methods is decreased. Using software simulations, the tracking performance of the proposed control system is assessed. 展开更多
关键词 WAVELET neural networks Self-Constructing DYNAMICAL modeling TRAJECTORY TRACKING
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部