期刊文献+
共找到121,715篇文章
< 1 2 250 >
每页显示 20 50 100
Neural-Network-Based Adaptive Finite-Time Control for a Two-Degree-of-Freedom Helicopter System With an Event-Triggering Mechanism 被引量:1
1
作者 Zhijia Zhao Jian Zhang +2 位作者 Shouyan Chen Wei He Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第8期1754-1765,共12页
Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a ne... Helicopter systems present numerous benefits over fixed-wing aircraft in several fields of application.Developing control schemes for improving the tracking accuracy of such systems is crucial.This paper proposes a neural-network(NN)-based adaptive finite-time control for a two-degree-of-freedom helicopter system.In particular,a radial basis function NN is adopted to solve uncertainty in the helicopter system.Furthermore,an event-triggering mechanism(ETM)with a switching threshold is proposed to alleviate the communication burden on the system.By proposing an adaptive parameter,a bounded estimation,and a smooth function approach,the effect of network measurement errors is effectively compensated for while simultaneously avoiding the Zeno phenomenon.Additionally,the developed adaptive finite-time control technique based on an NN guarantees finitetime convergence of the tracking error,thus enhancing the control accuracy of the system.In addition,the Lyapunov direct method demonstrates that the closed-loop system is semiglobally finite-time stable.Finally,simulation and experimental results show the effectiveness of the control strategy. 展开更多
关键词 Adaptive neural-network control event-triggering mechanism(ETM) finite time two-degree-of-freedom helicopter
下载PDF
A special hierarchical fuzzy neural-networks based reinforcement learning for multi-variables system
2
作者 张文志 吕恬生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期661-666,共6页
Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN)for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer... Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN)for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer in the HFNN is no longer used as if-part of the next layer, but used only in then-part. Thus it can deal with the difficulty when the output of the previous layer is meaningless or its meaning is uncertain. The proposed HFNN has a minimal number of fuzzy rules and can successfully solve the problem of rules combination explosion and decrease the quantity of computation and memory requirement. In the learning process, two HFNN with the same structure perform fuzzy action composition and evaluation function approximation simultaneously where the parameters of neural-networks are tuned and updated on line by using gradient descent algorithm. The reinforcement learning method is proved to be correct and feasible by simulation of a double inverted pendulum system. 展开更多
关键词 hierarchical fuzzy neural-networks reinforcement learning double inverted pendulum
下载PDF
Applying Neural-Network-Based Machine Learning to Additive Manufacturing:Current Applications,Challenges,and Future Perspectives 被引量:20
3
作者 Xinbo Qi Guofeng Chen +2 位作者 Yong Li Xuan Cheng Changpeng Li 《Engineering》 SCIE EI 2019年第4期721-729,共9页
Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturi... Additive manufacturing(AM),also known as three-dimensional printing,is gaining increasing attention from academia and industry due to the unique advantages it has in comparison with traditional subtractive manufacturing.However,AM processing parameters are difficult to tune,since they can exert a huge impact on the printed microstructure and on the performance of the subsequent products.It is a difficult task to build a process-structure-property-performance(PSPP)relationship for AM using traditional numerical and analytical models.Today,the machine learning(ML)method has been demonstrated to be a valid way to perform complex pattern recognition and regression analysis without an explicit need to construct and solve the underlying physical models.Among ML algorithms,the neural network(NN)is the most widely used model due to the large dataset that is currently available,strong computational power,and sophisticated algorithm architecture.This paper overviews the progress of applying the NN algorithm to several aspects of the AM whole chain,including model design,in situ monitoring,and quality evaluation.Current challenges in applying NNs to AM and potential solutions for these problems are then outlined.Finally,future trends are proposed in order to provide an overall discussion of this interdisciplinary area. 展开更多
关键词 ADDITIVE manufacturing 3D PRINTING NEURAL network Machine learning Algorithm
下载PDF
Backstepping sliding mode control for uncertain strict-feedback nonlinear systems using neural-network-based adaptive gain scheduling 被引量:12
4
作者 YANG Yueneng YAN Ye 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期580-586,共7页
A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain st... A neural-network-based adaptive gain scheduling backstepping sliding mode control(NNAGS-BSMC) approach for a class of uncertain strict-feedback nonlinear system is proposed.First, the control problem of uncertain strict-feedback nonlinear systems is formulated. Second, the detailed design of NNAGSBSMC is described. The sliding mode control(SMC) law is designed to track a referenced output via backstepping technique.To decrease chattering result from SMC, a radial basis function neural network(RBFNN) is employed to construct the NNAGSBSMC to facilitate adaptive gain scheduling, in which the gains are scheduled adaptively via neural network(NN), with sliding surface and its differential as NN inputs and the gains as NN outputs. Finally, the verification example is given to show the effectiveness and robustness of the proposed approach. Contrasting simulation results indicate that the NNAGS-BSMC decreases the chattering effectively and has better control performance against the BSMC. 展开更多
关键词 backstepping control sliding mode control(SMC) neural network(NN) strict-feedback system chattering decrease
下载PDF
Neural-network-based two-loop control of robotic manipulators including actuator dynamics in task space 被引量:3
5
作者 Liangyong WANG Tianyou CHAI Zheng FANG 《控制理论与应用(英文版)》 EI 2009年第2期112-118,共7页
A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task sp... A neural-network-based motion controller in task space is presented in this paper. The proposed controller is addressed as a two-loop cascade control scheme. The outer loop is given by kinematic control in the task space. It provides a joint velocity reference signal to the inner one. The inner loop implements a velocity servo loop at the robot joint level. A radial basis function network (RBFN) is integrated with proportional-integral (PI) control to construct a velocity tracking control scheme for the inner loop. Finally, a prototype technology based control system is designed for a robotic manipulator. The proposed control scheme is applied to the robotic manipulator. Experimental results confirm the validity of the proposed control scheme by comparing it with other control strategies. 展开更多
关键词 Robotic manipulator Motion control Neural network Task space
下载PDF
Establishing the knowledge repository of rapidly solidified aging Cu-Cr-Zr alloy on the artificial neural-network 被引量:3
6
作者 SUJuanhua DONGQiming +3 位作者 LIUPing LIHejun KANGBuxi TIANBaohong 《Rare Metals》 SCIE EI CAS CSCD 2004年第2期171-175,共5页
The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowle... The non-linear relationship between parameters of rapidly solidified agingprocesses and mechancal and electrical properties of Cu-Cr-Zr alloy is available by using asupervised artificial neural network (ANN). A knowledge repository of rapidly solidified agingprocesses is established via sufficient data learning by the network. The predicted values of theneural network are in accordance with the tested data. So an effective measure for foreseeing andcontrolling the properties of the processing is provided. 展开更多
关键词 Cu-Cr-Zr alloy knowledge repository artificial neural network rapidsolidifiation aging
下载PDF
Neural-network adaptive controller for nonlinear systems and its application in pneumatic servo systems 被引量:2
7
作者 Lu LU Fagui LIU Weixiang SHI 《控制理论与应用(英文版)》 EI 2008年第1期97-103,共7页
In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive... In this paper, a novel control law is presented, which uses neural-network techniques to approximate the affine class nonlinear system having unknown or uncertain dynamics and noise disturbances. It adopts an adaptive control law to adjust the network parameters online and adds another control component according to H-infinity control theory to attenuate the disturbance. This control law is applied to the position tracking control of pneumatic servo systems. Simulation and experimental results show that the tracking precision and convergence speed is obviously superior to the results by using the basic BP-network controller and self-tuning adaptive controller. 展开更多
关键词 Nonlinear control CONVERGENCE Adaptive control H-infinity control Neural networks Pneumatic servo system
下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:6
8
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF NNs) renewable power system terminal sliding mode control(T-SMC)
下载PDF
A modified alopex which guarantees stability for a class of closed-loop neural-network control systems
9
作者 纪军红 麻亮 +1 位作者 强文义 傅佩琛 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1999年第4期64-67,共4页
Untanpreeda presented a training algorithm based on BP [1] , which guarantees the closed loop stability for a class of widely used Neural network control systems. However, it has some shortcomings, such as insuf... Untanpreeda presented a training algorithm based on BP [1] , which guarantees the closed loop stability for a class of widely used Neural network control systems. However, it has some shortcomings, such as insufficient stable condition, low efficiency and frequent convergence of parameters to a local minimum. A new training algorithm based on Alopex is proposed to ensure sufficient stability, and overcome some of the shortcomings. 展开更多
关键词 neural network control system STABILITY ALOPEX algorithm
下载PDF
BP-Neural-Network-Based Tool Wear Monitoring by Using Wav elet Decomposition of the Power Spectrum 被引量:1
10
作者 ZHENGJian-ming XIChang-qing +1 位作者 LIYan XIAOJi-ming 《International Journal of Plant Engineering and Management》 2004年第4期198-204,共7页
In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have ... In a drilling process, the power spectrum of the drilling force is related tothe tool wear and is widely applied in the monitoring of tool wear. But the feature extraction andidentification of the power spectrum have always been an unresolved difficult problem. This papersolves it through decomposition of the power spectrum in multilayers using wavelet transform andextraction of the low frequency decomposition coefficient as the envelope information of the powerspectrum. Intelligent identification of the tool wear status is achieved in the drilling processthrough fusing the wavelet decomposition coefficient of the power spectrum by using a BP (BackPropagation) neural network. The experimental results show that the features of the power spectrumcan be extracted efficiently through this method, and the trained neural networks show highidentification precision and the ability of extension. 展开更多
关键词 tool wear monitoring power spectrum wavelet transform BP neural network
下载PDF
Multiple-model-and-neural-network-based nonlinear multivariable adaptive control
11
作者 Yue FU Tianyou CHAI 《控制理论与应用(英文版)》 EI 2007年第2期121-126,共6页
A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is c... A multivariable adaptive controller feasible for implementation on distributed computer systems (DCS) is presented for a class of uncertain nonlinear multivariable discrete time systems. The adaptive controller is composed of a linear adaptive controller, a neural network nonlinear adaptive controller and a switching mechanism. The linear controller can provide boundedness of the input and output signals, and the nonlinear controller can improve the performance of the system. The purpose of using the switching mechanism is to obtain the improved system performance and stability simultaneously. Theory analysis and simulation results are presented to show the effectiveness of the proposed method. 展开更多
关键词 Adaptive control Neural network Multiple models SWITCHING Stability
下载PDF
Algorithm of neural-network about solving nonlinear least squares adjustment by parameters
12
作者 QING Xi-hong~1, NING Wei~(1,2), TAO Hua-xue~1 (1. Shandong University of Science and Technology, Tai’an 271019, China 2. Shandong Agriculture University, Tai’an 271018, China) 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期145-147,共3页
Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving ... Study on solving nonlinear least squares adjustment by parameters is one of the most important and new subjects in modern surveying and mapping field . Many researchers have done a lot of work and gained some solving methods. These methods mainly include iterative algorithms and direct algorithms mainly. The former searches some methods of rapid convergence based on which surveying adjustment is a kind of problem of nonlinear programming. Among them the iterative algorithms of the most in common use are the Gauss-Newton method, damped least quares, quasi-Newton method and some mutations etc. Although these methods improved the quantity of the observation results to a certain degree, and increased the accuracy of the adjustment results, what we want is whether the initial values of unknown parameters are close to their real values. Of course, the model of the latter has better degree in linearity, that is to say, they nearly have the meaning of deeper theories researches. This paper puts forward a kind of method of solving the problems of nonlinear least squares adjustment by parameters based on neural network theory, and studies its stability and convergency. The results of calculating of living example indicate the method acts well for solving parameters problems by nonlinear least squares adjustment without giving exact approximation of parameters. 展开更多
关键词 NEURAL network nonlinear least SQUARES adjustment by PARAMETERS stability convergency
下载PDF
AN IMAGE SEGMENTATION APPROACH BASED ON FUZZY-NEURAL-NETWORK HYBRID SYSTEM
13
作者 Qian Yuntao Xie Weixin(Dept. of Computer Sci. & Eng., Northwestern Polytechnical University, Xi’an 710072) (Dept. of Electronic Eng., Xidian University, Xi’an 710071) 《Journal of Electronics(China)》 1997年第4期352-356,共5页
This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks w... This paper presents a new solution to the image segmentation problem, which is based on fuzzy-neural-network hybrid system (FNNHS). This approach can use the experiential knowledge and the ability of neural networks which learn knowledge from the examples, to obtain the well performed fuzzy rules. Furthermore this fuzzy inference system is completed by neural network structure which can work in parallel. The segmentation process consists of pre-segmentation based on region growing algorithm and region merging based on FNNHS. The experimental results on the complicated image manifest the utility of this method. 展开更多
关键词 COMPUTER VISION Image segmentation Fuzzy LOGIC NEURAL NETWORK
下载PDF
Multiple Chaos Generator by Neural-Network-Differential-Equation for Intelligent Fish-Catching
14
作者 Mamoru Minami Akira Yanou Yuya Ito Takashi Tomono 《通讯和计算机(中英文版)》 2013年第6期823-831,共9页
关键词 智能机器人 差分方程 神经网络 混沌轨迹 发生器 鱼类 适应能力 李雅普诺夫
下载PDF
Bootstrapped Multi-Model Neural-Network Super-Ensembles for Wind Speed and Power Forecasting
15
作者 Zhongxian Men Eugene Yee +2 位作者 Fue-Sang Lien Hua Ji Yongqian Liu 《Energy and Power Engineering》 2014年第11期340-348,共9页
The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a m... The bootstrap resampling method is applied to an ensemble artificial neural network (ANN) approach (which combines machine learning with physical data obtained from a numerical weather prediction model) to provide a multi-ANN model super-ensemble for application to multi-step-ahead forecasting of wind speed and of the associated power generated from a wind turbine. A statistical combination of the individual forecasts from the various ANNs of the super-ensemble is used to construct the best deterministic forecast, as well as the prediction uncertainty interval associated with this forecast. The bootstrapped neural-network methodology is validated using measured wind speed and power data acquired from a wind turbine in an operational wind farm located in northern China. 展开更多
关键词 Artificial Neural Network BOOTSTRAP RESAMPLING Numerical Weather Prediction Super-Ensemble Wind Speed Power Forecasting
下载PDF
E-Learning Optimization Using Supervised Artificial Neural-Network
16
作者 Mohamed Sayed Faris Baker 《Journal of Software Engineering and Applications》 2015年第1期26-34,共9页
Improving learning outcome has always been an important motivating factor in educational inquiry. In a blended learning environment where e-learning and traditional face to face class tutoring are combined, there are ... Improving learning outcome has always been an important motivating factor in educational inquiry. In a blended learning environment where e-learning and traditional face to face class tutoring are combined, there are opportunities to explore the role of technology in improving student’s grades. A student’s performance is impacted by many factors such as engagement, self-regulation, peer interaction, tutor’s experience and tutors’ time involvement with students. Furthermore, e-course design factors such as providing personalized learning are an urgent requirement for improved learning process. In this paper, an artificial neural network model is introduced as a type of supervised learning, meaning that the network is provided with example input parameters of learning and the desired optimized and correct output for that input. We also describe, by utilizing e-learning interactions and social analytics how to use artificial neural network to produce a converging mathematical model. Then students’ performance can be efficiently predicted and so the danger of failing in an enrolled e-course should be reduced. 展开更多
关键词 Artificial NEURAL NETWORKS E-LEARNING PREDICTION MODELS Supervised LEARNING
下载PDF
Using Artificial Neural-Networks in Stochastic Differential Equations Based Software Reliability Growth Modeling
17
作者 Sunil Kumar Khatri Prakriti Trivedi +1 位作者 Shiv Kant Nisha Dembla 《Journal of Software Engineering and Applications》 2011年第10期596-601,共6页
Due to high cost of fixing failures, safety concerns, and legal liabilities, organizations need to produce software that is highly reliable. Software reliability growth models have been developed by software developer... Due to high cost of fixing failures, safety concerns, and legal liabilities, organizations need to produce software that is highly reliable. Software reliability growth models have been developed by software developers in tracking and measuring the growth of reliability. Most of the Software Reliability Growth Models, which have been proposed, treat the event of software fault detection in the testing and operational phase as a counting process. Moreover, if the size of software system is large, the number of software faults detected during the testing phase becomes large, and the change of the number of faults which are detected and removed through debugging activities becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. Therefore in such a situation, we can model the software fault detection process as a stochastic process with a continuous state space. Recently, Artificial Neural Networks (ANN) have been applied in software reliability growth prediction. In this paper, we propose an ANN based software reliability growth model based on Ito type of stochastic differential equation. The model has been validated, evaluated and compared with other existing NHPP model by applying it on actual failure/fault removal data sets cited from real software development projects. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP based model. 展开更多
关键词 Software Reliability Growth Model Artificial NEURAL Network STOCHASTIC DIFFERENTIAL EQUATION (SDE) STOCHASTIC Process
下载PDF
基于小波降噪的神经网络盾构泥水分离系统参数预测方法
18
作者 周翠红 周富强 +1 位作者 刘兆赫 翟志国 《土木与环境工程学报(中英文)》 北大核心 2025年第1期11-17,共7页
泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技... 泥水盾构穿越复合地层时,掘进控制参数和泥水分离系统参数往往出现大幅波动,影响施工安全和掘进效率。为提升施工过程的安全稳定性,实现异常工况预测,依托望京隧道盾构工程,针对地层状况采用筛分、双旋流、离心/压滤固液分离协同控制技术,采集盾构机掘进参数(掘进速度、刀盘转速和总推进力等)和泥水分离系统运行参数(进浆量、进浆密度和进浆黏度等),通过Cook距离离群检测和小波阈值去噪处理提升数据质量;以双旋流分离密度比值、黏度比值等12个参数为输入,排浆量、排浆密度和排浆黏度为输出,建立BP神经网络泥水分离系统参数的预测模型,并选取3个不同地层环段进行预测对比分析。预测结果表明:预测平均绝对误差均在5%以内,该预测模型在复合地层下仍具有较高的准确性。 展开更多
关键词 盾构隧道 泥水分离 COOK距离 小波去噪 BP神经网络 参数预测
下载PDF
基于改进神经网络的医院通信安全态势感知方法
19
作者 邓从香 《电子设计工程》 2025年第1期166-170,175,共6页
针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模... 针对医院通信安全态势感知不及时,易导致医院信息系统重要信息受到损害的问题,提出基于改进神经网络的医院通信安全态势感知方法。使用基于小波消噪的通信信号去除噪声并保留关键信息,输入基于改进RBF神经网络的医院通信安全态势感知模型。利用花朵授粉算法完成改进RBF神经网络训练。通过径向基函数对输入数据进行非线性变换,将得到的权值进行加权求和,得到当前通信网络信号的安全态势预测结果。实验结果显示,应用该文方法的医院通信网络异常信息可在1 s内完成感知。 展开更多
关键词 改进神经网络 医院通信 安全态势 小波消噪 信号去噪 花朵授粉算法
下载PDF
基于稀疏注意力卷积ViT模型的锌浮选工况识别
20
作者 苏越 唐朝晖 +4 位作者 谢永芳 高小亮 张虎 马炜烨 汤海玚 《工程科学学报》 EI 北大核心 2025年第2期328-338,共11页
准确识别锌浮选工况并用于指导锌浮选操作,可以提高浮选效率、优化选矿过程.目前浮选现场主要通过人工肉眼观察泡沫并依据经验判断工况,这种方法主观性强,难以客观准确地评价锌浮选工况.针对该问题,本文通过研究锌浮选泡沫视觉特征和浮... 准确识别锌浮选工况并用于指导锌浮选操作,可以提高浮选效率、优化选矿过程.目前浮选现场主要通过人工肉眼观察泡沫并依据经验判断工况,这种方法主观性强,难以客观准确地评价锌浮选工况.针对该问题,本文通过研究锌浮选泡沫视觉特征和浮选工况的密切联系,提出基于稀疏注意力卷积ViT模型的锌浮选工况识别方法.首先,所提模型融合了卷积神经网络(Convolutional neural networks,CNN)和视觉Transformer(Vision transformer,ViT)的结构和优点,同时感知泡沫局部空间信息和全局信息,完备表征泡沫图像.其次,模型引入稀疏的多头注意力机制,每个注意力头以不同的稀疏程度处理特征,从不同尺度下感知全局信息,同时引入注意力门控单元优化特征传递,最终实现锌浮选工况识别.实验结果表明,本文所提工况识别方法在锌浮选泡沫图像数据集上的准确率达到88.62%,解决了传统CNN和ViT模型不能充分利用泡沫图像全局信息,且无法自适应捕捉泡沫图像重要特征的问题,为浮选流程优化提供有力支持. 展开更多
关键词 工况识别 卷积神经网络 视觉Transformer 稀疏注意力 泡沫浮选
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部