期刊文献+
共找到11,012篇文章
< 1 2 250 >
每页显示 20 50 100
Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex
1
作者 Yan Li Peng Hao +6 位作者 Hongmei Duan Fei Hao Wen Zhao Yudan Gao Zhaoyang Yang Kwok-Fai So Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第10期2923-2937,共15页
The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate ne... The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury.However,whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions,such as the cortex,remains unknown.In this study,we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury.Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells,as well as their differentiation into mature and functionally integrated neurons.Importantly,these new neurons reconstructed the architecture of cortical layers II to VI,integrated into the existing neural circuitry,and ultimately led to improved brain function.These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries. 展开更多
关键词 adult endogenous neurogenesis basic fibroblast growth factor-hyaluronic acid collagen gel cortical remodeling functional recovery migration motor cortex injury neural circuits neural stem cells newborn neurons proliferation
下载PDF
Unveiling the brain’s symphony:exploring the necessity and sufficiency of neural networks in behavior control
2
作者 Fernando Jose Bustos 《Neural Regeneration Research》 SCIE CAS 2025年第1期186-187,共2页
Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully a... Since the pioneering work by Broca and Wernicke in the 19th century,who examined individuals with brain lesions to associate them with specific behaviors,it was evident that behaviors are complex and cannot be fully attributable to specific brain areas alone.Instead,they involve connectivity among brain areas,whether close or distant.At that time,this approach was considered the optimal way to dissect brain circuitry and function.These pioneering efforts opened the field to explore the necessity or sufficiency of brain areas in controlling behavior and hence dissecting brain function.However,the connectivity of the brain and the mechanisms through which various brain regions regulate specific behaviors,either individually or collaboratively,remain largely elusive.Utilizing animal models,researchers have endeavored to unravel the necessity or sufficiency of specific brain areas in influencing behavior;however,no clear associations have been firmly established. 展开更多
关键词 behavior CONNECTIVITY neural
下载PDF
Women in visual neural regeneration research
3
作者 Tonia S.Rex David J.Calkins 《Neural Regeneration Research》 SCIE CAS 2025年第2期489-490,共2页
The year 2024 marks the 60^(th)anniversary of Title IX and 25 years since the New York Times revealed bias against female faculty members at the Massachusetts Institute of Technology.We take an opportunity here to exa... The year 2024 marks the 60^(th)anniversary of Title IX and 25 years since the New York Times revealed bias against female faculty members at the Massachusetts Institute of Technology.We take an opportunity here to examine the state of gender bias in a relatively new yet already prominent field,neural regeneration in the visual system,for which there is a well-defined context useful for this purpose.The National Eye Institute(NEI)provided the first round of research funding for its Audacious Goals Initiative(AGI)on visual neural regeneration in 2013 and the last round in 2021.Therefore,we focus on this timespan.Data sources included PubMed,the National Science Foundation(NSF),the NEI,the Blue Ridge Institute for Medical Research and data from the major professional organization for eye and vision research,the Association for Research in Vision and Ophthalmology(ARVO). 展开更多
关键词 NEURAL VISUAL TIMES
下载PDF
Commentary on:“Human neural stem cell-derived artificial organelles to improve oxidative phosphorylation”
4
作者 Kwok-Fai So 《Neural Regeneration Research》 SCIE CAS 2025年第10期3040-3040,共1页
Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata... Mitochondrial function is fundamental to neuroregeneration,particularly in neurons,where high energy demands are essential for repair and recovery(Patrón and Zinsmaier,2016;Beckervordersandforth et al.,2017;Iwata et al.,2023).Mitochondrial dysfunction,characterized by an imbalance in ATP levels and excessive production of mitochondrial reactive oxygen species,is a key factor that impedes neural regeneration in neurodegenerative diseases and after neuronal injury(Han et al.,2016,2020;Zheng et al.,2016;Zong et al.,2024). 展开更多
关键词 NEURAL Becker Human
下载PDF
Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration
5
作者 Ronglin Han Lanxin Luo +4 位作者 Caiyan Wei Yaru Qiao Jiming Xie Xianchao Pan Juan Xing 《Neural Regeneration Research》 SCIE CAS 2025年第5期1364-1376,共13页
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p... Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering. 展开更多
关键词 ALGINATE axon growth BIOMATERIALS extracellular matrix neural repair neurons NEUROREGENERATION POLYACRYLAMIDE POLYDIMETHYLSILOXANE stiffness
下载PDF
MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits
6
作者 Yuehua Cui Xiaokuang Ma +7 位作者 Jing Wei Chang Chen Neha Shakir Hitesch Guirram Zhiyu Dai Trent Anderson Deveroux Ferguson Shenfeng Qiu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1431-1444,共14页
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi... Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions. 展开更多
关键词 aging circuit connectivity cortical circuits molecular mechanisms neural regeneration NEURODEGENERATION synapses
下载PDF
Combinatorial therapies for spinal cord injury repair
7
作者 Carla S.Sousa Andreia Monteiro +1 位作者 António J.Salgado Nuno A.Silva 《Neural Regeneration Research》 SCIE CAS 2025年第5期1293-1308,共16页
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed t... Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management. 展开更多
关键词 electric stimulation neural tissue regeneration NEUROPROTECTION POLYTHERAPY spinal cord injury
下载PDF
Metabolic reprogramming: a new option for the treatment of spinal cord injury
8
作者 Jiangjie Chen Jinyang Chen +11 位作者 Chao Yu Kaishun Xia Biao Yang Ronghao Wang Yi Li Kesi Shi Yuang Zhang Haibin Xu Xuesong Zhang Jingkai Wang Qixin Chen Chengzhen Liang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1042-1057,共16页
Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness ... Spinal cord injuries impose a notably economic burden on society,mainly because of the severe after-effects they cause.Despite the ongoing development of various therapies for spinal cord injuries,their effectiveness remains unsatisfactory.However,a deeper understanding of metabolism has opened up a new therapeutic opportunity in the form of metabolic reprogramming.In this review,we explore the metabolic changes that occur during spinal cord injuries,their consequences,and the therapeutic tools available for metabolic reprogramming.Normal spinal cord metabolism is characterized by independent cellular metabolism and intercellular metabolic coupling.However,spinal cord injury results in metabolic disorders that include disturbances in glucose metabolism,lipid metabolism,and mitochondrial dysfunction.These metabolic disturbances lead to corresponding pathological changes,including the failure of axonal regeneration,the accumulation of scarring,and the activation of microglia.To rescue spinal cord injury at the metabolic level,potential metabolic reprogramming approaches have emerged,including replenishing metabolic substrates,reconstituting metabolic couplings,and targeting mitochondrial therapies to alter cell fate.The available evidence suggests that metabolic reprogramming holds great promise as a next-generation approach for the treatment of spinal cord injury.To further advance the metabolic treatment of the spinal cord injury,future efforts should focus on a deeper understanding of neurometabolism,the development of more advanced metabolomics technologies,and the design of highly effective metabolic interventions. 展开更多
关键词 AXONS GLYCOLYSIS metabolic reprogramming metabolism mitochondria neural regeneration NEUROPROTECTION oxidative phosphorylation spinal cord injury therapy
下载PDF
Characteristic changes in astrocyte properties during astrocyte-to-neuron conversion induced by NeuroD1/Ascl1/Dlx2
9
作者 Qing He Zhen Wang +5 位作者 Yuchen Wang Mengjie Zhu Zhile Liang Kanghong Zhang Yuge Xu Gong Chen 《Neural Regeneration Research》 SCIE CAS 2025年第6期1801-1815,共15页
Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders.... Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors––NeuroD1, Ascl1, and Dlx2––in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore,we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4(astrocyte endfeet signal), CX43(gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into preexisting neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain. 展开更多
关键词 AQUAPORIN-4 Ascl1 ASTROCYTE cortex Dlx2 gap junction glia-to-neuron conversion neural regeneration NeuroD1 REPROGRAMMING
下载PDF
Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury
10
作者 Mou Gao Qin Dong +3 位作者 Dan Zou Zhijun Yang Lili Guo Ruxiang Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1416-1430,共15页
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ... Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury. 展开更多
关键词 Akt signaling cerebral edema closed head injury Crry CXCR4 induced neural stem cell MICROGLIA NEUROINFLAMMATION
下载PDF
Establishment of human cerebral organoid systems to model early neural development and assess the central neurotoxicity of environmental toxins
11
作者 Daiyu Hu Yuanqing Cao +6 位作者 Chenglin Cai Guangming Wang Min Zhou Luying Peng Yantao Fan Qiong Lai Zhengliang Gao 《Neural Regeneration Research》 SCIE CAS 2025年第1期242-252,共11页
Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-li... Human brain development is a complex process,and animal models often have significant limitations.To address this,researchers have developed pluripotent stem cell-derived three-dimensional structures,known as brain-like organoids,to more accurately model early human brain development and disease.To enable more consistent and intuitive reproduction of early brain development,in this study,we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture.This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation,resulting in a new type of human brain organoid system.This cerebral organoid system replicated the temporospatial characteristics of early human brain development,including neuroepithelium derivation,neural progenitor cell production and maintenance,neuron differentiation and migration,and cortical layer patterning and formation,providing more consistent and reproducible organoids for developmental modeling and toxicology testing.As a proof of concept,we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins.Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns,including bursts of cortical cell death and premature differentiation.Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity,accompanied by compensatory cell proliferation at ectopic locations.The convenience,flexibility,and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental,neurological,and neurotoxicological studies. 展开更多
关键词 cadmium cell death cell proliferation cortical development environmental toxins neural progenitor cells NEUROGENESIS NEUROTOXICOLOGY ORGANOIDS stem cells
下载PDF
Enhancement of motor functional recovery in thoracic spinal cord injury: voluntary wheel running versus forced treadmill exercise
12
作者 Do-Hun Lee Dan Cao +4 位作者 Younghye Moon Chen Chen Nai-Kui Liu Xiao-Ming Xu Wei Wu 《Neural Regeneration Research》 SCIE CAS 2025年第3期836-844,共9页
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ... Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury. 展开更多
关键词 behavioral assessment motor function neural plasticity running wheel exercise spinal cord injury treadmill exercise voluntary exercise
下载PDF
Repetitive traumatic brain injury–induced complement C1–related inflammation impairs long-term hippocampal neurogenesis
13
作者 Jing Wang Bing Zhang +9 位作者 Lanfang Li Xiaomei Tang Jinyu Zeng Yige Song Chao Xu Kai Zhao Guoqiang Liu Youming Lu Xinyan Li Kai Shu 《Neural Regeneration Research》 SCIE CAS 2025年第3期821-835,共15页
Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In ... Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus,leading to long-term cognitive impairment.However,the mechanism underlying this neurogenesis impairment remains unknown.In this study,we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury.Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development,delayed neuronal maturation,and reduced the complexity of neuronal dendrites and spines.Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval.Moreover,following repetitive traumatic brain injury,neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased,C1q binding protein levels were decreased,and canonical Wnt/β-catenin signaling was downregulated.An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function.These findings suggest that repetitive traumatic brain injury–induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction. 展开更多
关键词 complement C1 dendrite dentate gyrus hippocampus neural stem cell NEUROGENESIS NEUROINFLAMMATION neurological function neuron traumatic brain injury
下载PDF
Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury
14
作者 Tong Li Hui-Min Xing +4 位作者 Hai-Dong Qian Qiao Gao Sheng-Lan Xu Hua Ma Zai-Long Chi 《Neural Regeneration Research》 SCIE CAS 2025年第2期587-597,共11页
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit... Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy. 展开更多
关键词 EXOSOME miRNA neural progenitor cell NEURODEGENERATION NEUROINFLAMMATION neuroprotection optic nerve crush optic neuropathy retinal ganglion cell small extracellular vesicles
下载PDF
Potential role of tanycyte-derived neurogenesis in Alzheimer's disease
15
作者 Guibo Qi Han Tang +2 位作者 Jianian Hu Siying Kang Song Qin 《Neural Regeneration Research》 SCIE CAS 2025年第6期1599-1612,共14页
Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. T... Tanycytes, specialized ependymal cells located in the hypothalamus, play a crucial role in the generation of new neurons that contribute to the neural circuits responsible for regulating the systemic energy balance. The precise coordination of the gene networks controlling neurogenesis in naive and mature tanycytes is essential for maintaining homeostasis in adulthood. However, our understanding of the molecular mechanisms and signaling pathways that govern the proliferation and differentiation of tanycytes into neurons remains limited. This article aims to review the recent advancements in research into the mechanisms and functions of tanycyte-derived neurogenesis. Studies employing lineage-tracing techniques have revealed that the neurogenesis specifically originating from tanycytes in the hypothalamus has a compensatory role in neuronal loss and helps maintain energy homeostasis during metabolic diseases. Intriguingly,metabolic disorders are considered early biomarkers of Alzheimer's disease. Furthermore,the neurogenic potential of tanycytes and the state of newborn neurons derived from tanycytes heavily depend on the maintenance of mild microenvironments, which may be disrupted in Alzheimer's disease due to the impaired blood–brain barrier function.However, the specific alterations and regulatory mechanisms governing tanycyte-derived neurogenesis in Alzheimer's disease remain unclear. Accumulating evidence suggests that tanycyte-derived neurogenesis might be impaired in Alzheimer's disease, exacerbating neurodegeneration. Confirming this hypothesis, however, poses a challenge because of the lack of long-term tracing and nucleus-specific analyses of newborn neurons in the hypothalamus of patients with Alzheimer's disease. Further research into the molecular mechanisms underlying tanycyte-derived neurogenesis holds promise for identifying small molecules capable of restoring tanycyte proliferation in neurodegenerative diseases. This line of investigation could provide valuable insights into potential therapeutic strategies for Alzheimer's disease and related conditions. 展开更多
关键词 Alzheimer's disease blood–brain barrier ependymoglial cells HYPOTHALAMUS metabolic diseases neural stem cells NEUROGENESIS neuroinflammatory diseases NEURONS TANYCYTE
下载PDF
The role of axon guidance molecules in the pathogenesis of epilepsy
16
作者 Zheng Liu Chunhua Pan Hao Huang 《Neural Regeneration Research》 SCIE CAS 2025年第5期1244-1257,共14页
Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target no... Current treatments for epilepsy can only manage the symptoms of the condition but cannot alter the initial onset or halt the progression of the disease. Consequently, it is crucial to identify drugs that can target novel cellular and molecular mechanisms and mechanisms of action. Increasing evidence suggests that axon guidance molecules play a role in the structural and functional modifications of neural networks and that the dysregulation of these molecules is associated with epilepsy susceptibility. In this review, we discuss the essential role of axon guidance molecules in neuronal activity in patients with epilepsy as well as the impact of these molecules on synaptic plasticity and brain tissue remodeling. Furthermore, we examine the relationship between axon guidance molecules and neuroinflammation, as well as the structural changes in specific brain regions that contribute to the development of epilepsy. Ample evidence indicates that axon guidance molecules, including semaphorins and ephrins, play a fundamental role in guiding axon growth and the establishment of synaptic connections. Deviations in their expression or function can disrupt neuronal connections, ultimately leading to epileptic seizures. The remodeling of neural networks is a significant characteristic of epilepsy, with axon guidance molecules playing a role in the dynamic reorganization of neural circuits. This, in turn, affects synapse formation and elimination. Dysregulation of these molecules can upset the delicate balance between excitation and inhibition within a neural network, thereby increasing the risk of overexcitation and the development of epilepsy. Inflammatory signals can regulate the expression and function of axon guidance molecules, thus influencing axonal growth, axon orientation, and synaptic plasticity. The dysregulation of neuroinflammation can intensify neuronal dysfunction and contribute to the occurrence of epilepsy. This review delves into the mechanisms associated with the pathogenicity of axon guidance molecules in epilepsy, offering a valuable reference for the exploration of therapeutic targets and presenting a fresh perspective on treatment strategies for this condition. 展开更多
关键词 axon guidance drug-resistant epilepsy EPILEPSY nerve regeneration nervous system diseases neural pathways neuroinflammatory diseases neuronal plasticity NEURONS synaptic remodeling
下载PDF
Repetitive transcranial magnetic stimulation in Alzheimer’s disease:effects on neural and synaptic rehabilitation
17
作者 Yi Ji Chaoyi Yang +7 位作者 Xuerui Pang Yibing Yan Yue Wu Zhi Geng Wenjie Hu Panpan Hu Xingqi Wu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第2期326-342,共17页
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur... Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations. 展开更多
关键词 Alzheimer’s disease amyloid deposition apoptotic mechanisms BIOMARKER neural regeneration NEURODEGENERATION repetitive transcranial magnetic stimulation synaptic plasticity
下载PDF
Impacts of Nutlin-3a and exercise on murine double minute 2-enriched glioma treatment
18
作者 Yisheng Chen Zhongcheng Fan +11 位作者 Zhiwen Luo Xueran Kang Renwen Wan Fangqi Li Weiwei Lin Zhihua Han Beijie Qi Jinrong Lin Yaying Sun Jiebin Huang Yuzhen Xu Shiyi Chen 《Neural Regeneration Research》 SCIE CAS 2025年第4期1135-1152,共18页
Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients,with evidence suggesting exercise may reduce mortality risks and aid neural regeneration.The role of the small ubiqu... Recent research has demonstrated the impact of physical activity on the prognosis of glioma patients,with evidence suggesting exercise may reduce mortality risks and aid neural regeneration.The role of the small ubiquitin-like modifier(SUMO)protein,especially post-exercise,in cancer progression,is gaining attention,as are the potential anti-cancer effects of SUMOylation.We used machine learning to create the exercise and SUMO-related gene signature(ESLRS).This signature shows how physical activity might help improve the outlook for low-grade glioma and other cancers.We demonstrated the prognostic and immunotherapeutic significance of ESLRS markers,specifically highlighting how murine double minute 2(MDM2),a component of the ESLRS,can be targeted by nutlin-3.This underscores the intricate relationship between natural compounds such as nutlin-3 and immune regulation.Using comprehensive CRISPR screening,we validated the effects of specific ESLRS genes on low-grade glioma progression.We also revealed insights into the effectiveness of Nutlin-3a as a potent MDM2 inhibitor through molecular docking and dynamic simulation.Nutlin-3a inhibited glioma cell proliferation and activated the p53 pathway.Its efficacy decreased with MDM2 overexpression,and this was reversed by Nutlin-3a or exercise.Experiments using a low-grade glioma mouse model highlighted the effect of physical activity on oxidative stress and molecular pathway regulation.Notably,both physical exercise and Nutlin-3a administration improved physical function in mice bearing tumors derived from MDM2-overexpressing cells.These results suggest the potential for Nutlin-3a,an MDM2 inhibitor,with physical exercise as a therapeutic approach for glioma management.Our research also supports the use of natural products for therapy and sheds light on the interaction of exercise,natural products,and immune regulation in cancer treatment. 展开更多
关键词 exercise and SUMO-related gene signatures(ESLRS) glioblastoma management low-grade glioma natural bioactives neural regeneration physical exercise
下载PDF
Maintaining moderate levels of hypochlorous acid promotes neural stem cell proliferation and differentiation in the recovery phase of stroke
19
作者 Lin-Yan Huang Yi-De Zhang +9 位作者 Jie Chen Hai-Di Fan Wan Wang Bin Wang Ju-Yun Ma Peng-Peng Li Hai-Wei Pu Xin-Yian Guo Jian-Gang Shen Su-Hua Qi 《Neural Regeneration Research》 SCIE CAS 2025年第3期845-857,共13页
It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases ... It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke.Indeed,previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue.Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke,but its specific role and mechanism are currently unclear.To simulate stroke in vivo,a middle cerebral artery occlusion rat model was established,with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke.We found that in the early stage(within 24 hours)of ischemic stroke,neutrophils produced a large amount of hypochlorous acid,while in the recovery phase(10 days after stroke),microglia were activated and produced a small amount of hypochlorous acid.Further,in acute stroke in rats,hypochlorous acid production was prevented using a hypochlorous acid scavenger,taurine,or myeloperoxidase inhibitor,4-aminobenzoic acid hydrazide.Our results showed that high levels of hypochlorous acid(200μM)induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation.However,in the recovery phase of the middle cerebral artery occlusion model,a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes.This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury.Lower levels of hypochlorous acid(5 and 100μM)promoted nuclear translocation ofβ-catenin.By transfection of single-site mutation plasmids,we found that hypochlorous acid induced chlorination of theβ-catenin tyrosine 30 residue,which promoted nuclear translocation.Altogether,our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function. 展开更多
关键词 cell differentiation cerebral ischemia/reperfusion injury CHLORINATION hypochlorous acid MICROGLIA neural stem cell NEUROGENESIS nuclear translocation stroke β-catenin
下载PDF
Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis
20
作者 Conglin Wang Fangyuan Cheng +9 位作者 Zhaoli Han Bo Yan Pan Liao Zhenyu Yin Xintong Ge Dai Li Rongrong Zhong Qiang Liu Fanglian Chen Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第2期518-532,共15页
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)... Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes. 展开更多
关键词 AKT ASTROCYTE blood-brain barrier cerebral edema EXOSOMES human-induced pluripotent stem cells intracerebral hemorrhage neural stem cells NEUROINFLAMMATION PI3K
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部