期刊文献+
共找到471,968篇文章
< 1 2 250 >
每页显示 20 50 100
The Effect of Different Hyperbaric Oxygen Treatment Time Windows on Neurological Function and Prognosis in Acute Cerebral Infarction
1
作者 Tianqi Chen Xiaobei Liu 《Expert Review of Chinese Medical》 2024年第2期1-6,共6页
Objective:To observe the effects of different hyperbaric oxygen treatment time windows on the prognosis and neurological function of acute cerebral infarction.Method:160 patients with acute cerebral infarction admitte... Objective:To observe the effects of different hyperbaric oxygen treatment time windows on the prognosis and neurological function of acute cerebral infarction.Method:160 patients with acute cerebral infarction admitted to Xiangyang Central Hospital in Hubei Province were randomly divided into four groups,each with 40 cases,using a random number table method.According to the 2017 guidelines for the treatment of cerebral infarction,the control group received routine treatment for acute cerebral infarction;On the basis of the control group,patients in Group A received hyperbaric oxygen therapy within 48 hours of onset;Group B patients receive hyperbaric oxygen therapy within 3-6 days of onset;Group C patients receive hyperbaric oxygen therapy within 7-12 days of onset.Observe the efficacy,recurrence,and neurological function recovery of four groups of patients after treatment.Result:There was no statistically significant difference in the National Institutes of Health Stroke Scale(NIHSS)and Barthel Index(BI)scores among the four groups before treatment(P>0.05).There were statistically significant differences in NIHSS and BI scores between 14 and 30 days after treatment and before treatment(F=16.352,27.261,11.899,28.326,P<0.05).At 14 and 30 days after treatment,the NIHSS score in Group A decreased compared to the control group,Group B,and Group C,while the BI score increased compared to the control group,Group B,and Group C,with statistical significance(P<0.05).There was no statistically significant difference in NIHSS and BI scores between Group C and the control group after treatment(P>0.05).After 30 days of treatment,the total effective rate of Group A was higher than that of the control group and Group C,and the difference was statistically significant(X2=6.135,P<0.05).The one-year recurrence rate of Group A and Group B is lower than that of Group C and the control group,and the difference is statistically significant(X2=8.331,P<0.05).There was no statistically significant difference in adverse reactions among the four groups(P>0.05).Conclusion:Patients with acute cerebral infarction who receive hyperbaric oxygen therapy within 48 hours can improve neurological function and reduce the recurrence rate.The efficacy of receiving hyperbaric oxygen therapy within 7-12 days of onset is equivalent to that of not receiving hyperbaric oxygen therapy. 展开更多
关键词 acute cerebral infarction neurological function hyperbaric oxygen RECRUDESCENCE
下载PDF
Neurological Disorders Caused by Structural Dysfunction of VANGL2
2
作者 Liheng Shen Zixiang Xu +1 位作者 Xiaobin Xiong Xin Sheng 《Neuroscience & Medicine》 2024年第2期106-117,共12页
Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization... Background: VANGL2 plays a variety of roles in various cellular processes, including tissue morphogenesis, asymmetric cell division, and nervous system development. There is currently a lack of systematic organization in the development and disease of the nervous system. Purpose: To explore the role of VANGL2 in the development of the nervous system and related diseases. Methods: Literature review and analysis of the role of VANGL2 in the development and disease of the nervous system. Results: VANGL2 defects lead to the development of the nervous system through the misconfiguration of various cells, which affects the development of the cochlea, the conduction of neural signals, and the development of nervous system-related diseases such as Alzheimer’s disease, GBM, Bohling-Opitz syndrome, and hydrocephalus. Conclusions: The VANGL2 gene is essential for nervous system development and its deficiency is linked to severe congenital conditions and various disorders, highlighting the need for more research on treatments for related gene defects. 展开更多
关键词 VANGL2 neurological Disorders Planar Cell Polarity (PCP) Pathway Neural Tube Defects
下载PDF
Erythropoietin inhibits ferroptosis and ameliorates neurological function after spinal cord injury 被引量:6
3
作者 Yu Kang Rui Zhu +4 位作者 Shuang Li Kun-Peng Qin Hao Tang Wen-Shan Shan Zong-Sheng Yin 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期881-888,共8页
Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotectiv... Ferroptosis is one of the critical pathological events in spinal cord injury.Erythropoietin has been reported to improve the recovery of spinal cord injury.However,whether ferroptosis is involved in the neuroprotective effects of erythropoietin on spinal cord injury has not been examined.In this study,we established rat models of spinal cord injury by modified Allen’s method and intraperitoneally administered 1000 and 5000 IU/kg erythropoietin once a week for 2 successive weeks.Both low and high doses of erythropoietin promoted recovery of hindlimb function,and the high dose of erythropoietin led to better outcome.High dose of erythropoietin exhibited a stronger suppressive effect on ferroptosis relative to the low dose of erythropoietin.The effects of erythropoietin on inhibiting ferroptosis-related protein expression and restoring mitochondrial morphology were similar to those of Fer-1(a ferroptosis suppressor),and the effects of erythropoietin were largely diminished by RSL3(ferroptosis activator).In vitro experiments showed that erythropoietin inhibited RSL3-induced ferroptosis in PC12 cells and increased the expression of xCT and Gpx4.This suggests that xCT and Gpx4 are involved in the neuroprotective effects of erythropoietin on spinal cord injury.Our findings reveal the underlying anti-ferroptosis role of erythropoietin and provide a potential therapeutic strategy for treating spinal cord injury. 展开更多
关键词 ERYTHROPOIETIN ferroptosis Gpx4 iron overload lipid peroxidation mechanism neurological function recovery spinal cord injury spinal neuron xCT
下载PDF
miR-181b promotes angiogenesis and neurological function recovery after ischemic stroke 被引量:5
4
作者 Li-Xia Xue Lin-Yuan Shu +6 位作者 Hong-Mei Wang Kai-Li Lu Li-Gang Huang Jing-Yan Xiang Zhi Geng Yu-Wu Zhao Hao Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第9期1983-1989,共7页
Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promo... Promotion of new blood vessel formation is a new strategy for treating ischemic stroke.Non-coding miRNAs have been recently considered potential therapeutic targets for ischemic stroke.miR-181b has been shown to promote angiogenesis in hypoxia and traumatic brain injury model,while its effect on ischemic stroke remains elusive.In this study,we found that overexpression of miR-181b in brain microvascular endothelial cells subjected to oxygen-glucose deprivation in vitro restored cell prolife ration and enhanced angiogenesis.In rat models of focal cerebral ischemia,ove rexpression of miR-181b reduced infarction volume,promoted angiogenesis in ischemic penumbra,and improved neurological function.We further investigated the molecular mechanism by which miR-181b participates in angiogenesis after ischemic stroke and found that miR-181b directly bound to the 3’-UTR of phosphatase and tensin homolog(PTEN) mRNA to induce PTEN downregulation,leading to activation of the protein kinase B(Akt) pathway,upregulated expression of vascular endothelial growth facto rs,down-regulated expression of endostatin,and promoted angiogenesis.Taken togethe r,these results indicate that exogenous miR-181b exhibits neuroprotective effects on ischemic stro ke through activating the PTEN/Akt signal pathway and promoting angiogenesis. 展开更多
关键词 Akt ANGIOGENESIS ENDOSTATIN ischemic stroke middle cerebral artery occlusion miR-181b neurological function recovery oxygen-glucose deprivation PTEN vascular endothelial growth factor
下载PDF
Influence of ganglioside combined with methylprednisolone sodium succinate on efficacy and neurological function in patients with acute myelitis 被引量:1
5
作者 Yu-Fei Sun Li-Li Liu +3 位作者 Sha-Sha Jiang Xian-Juan Zhang Feng-Jun Liu Wan-Ming Zhang 《World Journal of Clinical Cases》 SCIE 2023年第33期7972-7979,共8页
BACKGROUND Acute myelitis(AM)can lead to sudden sensory,motor and autonomic nervous dysfunction,which negatively affects their daily activities and quality of life,so it is necessary to explore optimization from a the... BACKGROUND Acute myelitis(AM)can lead to sudden sensory,motor and autonomic nervous dysfunction,which negatively affects their daily activities and quality of life,so it is necessary to explore optimization from a therapeutic perspective to curb the progression of the disease.AIM To investigate the effect of ganglioside(GM)combined with methylprednisolone sodium succinate(MPSS)on the curative effect and neurological function of patients with AM.METHODS First,we selected 108 AM patients visited between September 2019 and September 2022 and grouped them based on treatment modality,with 52 patients receiving gamma globulin(GG)+MPSS and 56 patients receiving GM+MPSS,assigned to the control group(Con)and observation group(Obs),respectively.The therapeutic effect,neurological function(sensory and motor function scores),adverse events(AEs),recovery(time to sphincter function recovery,time to limb muscle strength recovery above grade 2,and time to ambulation),inflammatory factors(IFs)[interleukin(IL)-6,C-reactive protein(CRP),and tumor necrosis factor(TNF)-α]and other data of the two groups were collected for evaluation and comparison.RESULTS The Obs had:(1)A significantly higher response rate of treatment than the Con;(2)Higher scores of sensory and motor functions after treatment that were higher than the baseline(before treatment)and higher than the Con levels;(3)Lower incidence rates of skin rash,gastrointestinal discomfort,dyslipidemia,osteoporosis and other AEs;(4)Faster posttreatment recovery of sphincter function,limb muscle strength and ambulation;and(5)Markedly lower posttreatment IL-6,CRP and TNF-αlevels than the baseline and the Con levels.CONCLUSION From the above,it can be seen that GM+MPSS is highly effective in treating AM,with a favorable safety profile comparable to that of GG+MPSS.It can significantly improve patients’neurological function,speed up their recovery and inhibit serum IFs. 展开更多
关键词 GANGLIOSIDE Methylprednisolone sodium succinate Acute myelitis Therapeutic effect neurological function
下载PDF
Repetitive transcranial magnetic stimulation promotes neurological functional recovery in rats with traumatic brain injury by upregulating synaptic plasticity-related proteins 被引量:5
6
作者 Fang-Fang Qian You-Hua He +3 位作者 Xiao-Hui Du Hua-Xiang Lu Ren-Hong He Jian-Zhong Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期368-374,共7页
Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic ... Studies have shown that repetitive transcra nial magnetic stimulation(rTMS)can enhance synaptic plasticity and improve neurological dysfunction.Howeve r,the mechanism through which rTMS can improve moderate traumatic brain injury remains poorly understood.In this study,we established rat models of moderate traumatic brain injury using Feeney's weight-dropping method and treated them using rTMS.To help determine the mechanism of action,we measured levels of seve ral impo rtant brain activity-related proteins and their mRNA.On the injured side of the brain,we found that rTMS increased the protein levels and mRNA expression of brain-derived neurotrophic factor,tropomyosin receptor kinase B,N-methyl-D-aspartic acid receptor 1,and phosphorylated cAMP response element binding protein,which are closely associated with the occurrence of long-term potentiation.rTMS also partially reve rsed the loss of synaptophysin after injury and promoted the remodeling of synaptic ultrastructure.These findings suggest that upregulation of synaptic plasticity-related protein expression is the mechanism through which rTMS promotes neurological function recovery after moderate traumatic brain injury. 展开更多
关键词 brain-derived neurotrophic factor moderate traumatic brain injury neurological dysfunction neurological improvement N-methyl-D-aspartic acid receptor repetitive transcranial magnetic stimulation synaptic plasticity SYNAPTOPHYSIN traumatic brain injury TRKB
下载PDF
Neuro faces of beneficial T cells:essential in brain,impaired in aging and neurological diseases,and activated functionally by neurotransmitters and neuropeptides 被引量:6
7
作者 Mia Levite 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1165-1178,共14页
T cells are essential for a healthy life,performing continuously:immune surveillance,recognition,protection,activation,suppression,assistance,eradication,secretion,adhesion,migration,homing,communications,and addition... T cells are essential for a healthy life,performing continuously:immune surveillance,recognition,protection,activation,suppression,assistance,eradication,secretion,adhesion,migration,homing,communications,and additional tasks.This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain.First,normal beneficial T cells are essential for normal healthy brain functions:cognition,spatial learning,memory,adult neurogenesis,and neuroprotection.T cells decrease secondary neuronal degeneration,increase neuronal survival after central nervous system(CNS) injury,and limit CNS inflammation and damage upon injury and infection.Second,while pathogenic T cells contribute to CNS disorders,recent studies,mostly in animal models,show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in seve ral neuroinflammatory and neurodegenerative diseases.These include M ultiple Sclerosis(MS),Alzheimer’s disease,Parkinson’s disease,Amyotrophic Lateral Sclerosis(ALS),stro ke,CNS trauma,chronic pain,and others.Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective,neuro regenerative and immunomodulato ry effects.Third,normal beneficial T cells are abnormal,impaired,and dysfunctional in aging and multiple neurological diseases.Different T cell impairments are evident in aging,brain tumors(mainly Glioblastoma),seve re viral infections(including COVID-19),chro nic stress,major depression,schizophrenia,Parkinson’s disease,Alzheimer’s disease,ALS,MS,stro ke,and other neuro-pathologies.The main detrimental mechanisms that impair T cell function are activation-induced cell death,exhaustion,senescence,and impaired T cell stemness.Fo urth,several physiological neurotransmitters and neuro peptides induce by themselves multiple direct,potent,beneficial,and therapeutically-relevant effects on normal human T cells,via their receptors in T cells.This scientific field is called "Nerve-Driven Immunity".The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naive normal human T cells are:dopamine,glutamate,GnRH-Ⅱ,neuropeptide Y,calcitonin gene-related peptide,and somatostatin.Fifth, "Personalized Adoptive Neuro-Immunotherapy".This is a novel unique cellular immunotherapy,based on the "Nerve-Driven Immunity" findings,which was recently designed and patented for safe and repeated rejuvenation,activation,and improvement of impaired and dysfunctional T cells of any person in need,by ex vivo exposure of the person’s T cells to neurotransmitters and neuropeptides.Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis,and subsequent ex vivo in vivo personalized adoptive therapy,tailo red according to the diagnosis.The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans,pending validation of safety and efficacy in clinical trials,especially in brain tumors,chronic infectious diseases,and aging,in which T cells are exhausted and/or senescent and dysfunctional. 展开更多
关键词 AGING dopamine GLUTAMATE nerve-driven immunity neurological diseases NEUROPEPTIDES NEUROTRANSMITTERS Personalized Adoptive Neuro-Immunotherapy T cells
下载PDF
Functional near-infrared spectroscopy in non-invasive neuromodulation 被引量:3
8
作者 Congcong Huo Gongcheng Xu +6 位作者 Hui Xie Tiandi Chen Guangjian Shao Jue Wang Wenhao Li Daifa Wang Zengyong Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1517-1522,共6页
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson... Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases. 展开更多
关键词 brain-computer interface cerebral neural networks functional near-infrared spectroscopy neural circuit NEUROFEEDBACK neurological diseases NEUROMODULATION non-invasive brain stimulation transcranial electrical stimulation transcranial electrical stimulation
下载PDF
Na^(+)/K^(+)-ATPase:ion pump,signal transducer,or cytoprotective protein,and novel biological functions 被引量:2
9
作者 Songqiang Huang Wanting Dong +1 位作者 Xiaoqian Lin Jinsong Bian 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2684-2697,共14页
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^... Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed. 展开更多
关键词 ANTIBODY biological functions cellular communication electrochemical gradient ion balance ion channels Na^(+)/K^(+)-ATPase neurological diseases neurotransmitter release signal transduction
下载PDF
Kdm6a-CNN1 axis orchestrates epigenetic control of traumainduced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair 被引量:1
10
作者 Chengjun Li Tian Qin +10 位作者 Jinyun Zhao Yuxin Jin Yiming Qin Rundong He Tianding Wu Chunyue Duan Liyuan Jiang Feifei Yuan Hongbin Lu Yong Cao Jianzhong Hu 《Bone Research》 SCIE CAS CSCD 2024年第2期314-333,共20页
Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,... Cellular senescence assumes pivotal roles in various diseases through the secretion of proinflammatory factors.Despite extensive investigations into vascular senescence associated with aging and degenerative diseases,the molecular mechanisms governing microvascular endothelial cell senescence induced by traumatic stress,particularly its involvement in senescence-induced inflammation,remain insufficiently elucidated.In this study,we present a comprehensive demonstration and characterization of microvascular endothelial cell senescence induced by spinal cord injury(SCI).Lysine demethylase 6A(Kdm6a),commonly known as UTX,emerges as a crucial regulator of cell senescence in injured spinal cord microvascular endothelial cells(SCMECs).Upregulation of UTX induces senescence in SCMECs,leading to an amplified release of proinflammatory factors,specifically the senescenceassociated secretory phenotype(SASP)components,thereby modulating the inflammatory microenvironment.Conversely,the deletion of UTX in endothelial cells shields SCMECs against senescence,mitigates the release of proinflammatory SASP factors,and promotes neurological functional recovery after SCI.UTX forms an epigenetic regulatory axis by binding to calponin 1(CNN1),orchestrating trauma-induced SCMECs senescence and SASP secretion,thereby influencing neuroinflammation and neurological functional repair.Furthermore,local delivery of a senolytic drug reduces senescent SCMECs and suppresses proinflammatory SASP secretion,reinstating a local regenerative microenvironment and enhancing functional repair after SCI.In conclusion,targeting the UTX-CNN1 epigenetic axis to prevent trauma-induced SCMECs senescence holds the potential to inhibit SASP secretion,alleviate neuroinflammation,and provide a novel treatment strategy for SCI repair. 展开更多
关键词 inflammation EPIGENETIC neurological
下载PDF
Hypidone hydrochloride(YL-0919)ameliorates functional deficits after traumatic brain injury in mice by activating the sigma-1 receptor for antioxidation
11
作者 Yafan Bai Hui Ma +5 位作者 Yue Zhang Jinfeng Li Xiaojuan Hou Yixin Yang Guyan Wang Yunfeng Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2325-2336,共12页
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0... Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury. 展开更多
关键词 antidepressant drug blood-brain barrier cognitive function hypidone hydrochloride(YL-0919) neurological function nuclear factor-erythroid 2 related factor 2 oxidative stress sigma-1 receptor superoxide dismutase traumatic brain injury
下载PDF
Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter 被引量:2
12
作者 Tao Chen Qianrui Liu +2 位作者 Yu Liu Liang Sun Mohan Chen 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第1期44-57,共14页
In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at ... In traditional finite-temperature Kohn–Sham density functional theory(KSDFT),the partial occupation of a large number of high-energy KS eigenstates restricts the use of first-principles molecular dynamics methods at extremely high temperatures.However,stochastic density functional theory(SDFT)can overcome this limitation.Recently,SDFT and the related mixed stochastic–deterministic density functional theory,based on a plane-wave basis set,have been implemented in the first-principles electronic structure software ABACUS[Q.Liu and M.Chen,Phys.Rev.B 106,125132(2022)].In this study,we combine SDFT with the Born–Oppenheimer molecular dynamics method to investigate systems with temperatures ranging from a few tens of eV to 1000 eV.Importantly,we train machine-learning-based interatomic models using the SDFT data and employ these deep potential models to simulate large-scale systems with long trajectories.Subsequently,we compute and analyze the structural properties,dynamic properties,and transport coefficients of warm dense matter. 展开更多
关键词 STOCHASTIC theory functionAL
下载PDF
Effects of elafibranor on liver fibrosis and gut barrier function in a mouse model of alcohol-associated liver disease 被引量:6
13
作者 Aritoshi Koizumi Kosuke Kaji +10 位作者 Norihisa Nishimura Shohei Asada Takuya Matsuda Misako Tanaka Nobuyuki Yorioka Yuki Tsuji Koh Kitagawa Shinya Sato Tadashi Namisaki Takemi Akahane Hitoshi Yoshiji 《World Journal of Gastroenterology》 SCIE CAS 2024年第28期3428-3446,共19页
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer... BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function. 展开更多
关键词 Liver fibrosis ETHANOL Gut barrier function Apoptosis AUTOPHAGY Peroxisome proliferator activated receptor
下载PDF
Tailoring MXene Thickness and Functionalization for Enhanced Room‑Temperature Trace NO_(2) Sensing 被引量:2
14
作者 Muhammad Hilal Woochul Yang +1 位作者 Yongha Hwang Wanfeng Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期71-86,共16页
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method... In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies. 展开更多
关键词 Controlled MXene thickness Gaseous functionalization approach Lower electronegativity functional groups Enhanced MXene stability Trace NO_(2)sensing
下载PDF
Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury 被引量:1
15
作者 Dezun Ma Changlong Fu +5 位作者 Fenglu Li Renjie Ruan Yanming Lin Xihai Li Min Li Jin Zhang 《Bioactive Materials》 SCIE CSCD 2024年第9期521-543,共23页
Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a ... Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment,which mainly comprises excessive inflammation,deposition of inhibitory molecules,neurotrophic factor deprivation,glial scar formation,and imbalance of vascular function.To overcome this challenge,implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration,remyelination at injury site,and functional recovery after SCI.This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment,regulate inhibitory microenvironment,and reshape revascularization microenvironment.Moreover,technological limitations,challenges,and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed.This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment. 展开更多
关键词 Spinal cord injury Dysfunctional pathological microenvironment functional biomaterials Axon regeneration functional recovery
原文传递
Full neurological recovery from severe nonexertional heat stroke with multiple organ dysfunction:A case report
16
作者 Fang Du Jun-Wei Zheng +2 位作者 Yan-Bo Zhao Kai Yang Hu-Nian Li 《World Journal of Clinical Cases》 SCIE 2023年第10期2355-2362,共8页
BACKGROUND We report a rare case of full neurological recovery from severe nonexertional heat stroke in a 67-year-old woman with an initial Glasgow Coma Scale of 3.This report raises awareness among doctors that when ... BACKGROUND We report a rare case of full neurological recovery from severe nonexertional heat stroke in a 67-year-old woman with an initial Glasgow Coma Scale of 3.This report raises awareness among doctors that when heatstroke is diagnosed,comprehensive treatment should be implemented as soon as possible.Moreover,targeted temperature management,combination therapy with hemodialysis and hemoperfusion,and hyperbaric oxygen therapy may alleviate multiorgan failure and prevent neurological sequelae caused by heatstroke.CASE SUMMARY A previously healthy 67-year-old woman with an initial Glasgow Coma Scale of 3 was found lying prone on the road at noon on a summer day.Laboratory tests revealed multiorgan failure.As soon as heatstroke was diagnosed,comprehensive treatment was implemented.On hospital Day 3,the patient was extubated.Her initial Sequential Organ Failure Assessment score at hospitalization was 14 and decreased to 2 on hospital Day 4.On the seventh day following hospital admission,as the patient’s general condition improved,the levels of laboratory test findings decreased rapidly.Finally,the patient gradually recovered with no other neurological symptoms(the Glasgow Coma Scale at discharge was 15,and her ability to walk independently was restored).CONCLUSION This case demonstrated that targeted temperature management,combination therapy with hemodialysis and hemoperfusion,and hyperbaric oxygen therapy may alleviate multiorgan failure and prevent neurological sequelae caused by heatstroke. 展开更多
关键词 Heat stroke Multiple organ failure neurological RECOVERY Case report
下载PDF
Interaction between systemic iron parameters and left ventricular structure and function in the preserved ejection fraction population:a two-sample bidirectional Mendelian randomization study 被引量:1
17
作者 Xiong-Bin MA Yong-Ming LIU +1 位作者 Yan-Lin LV Lin QIAN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第1期64-80,共17页
BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated th... BACKGROUND Left ventricular(LV)remodeling and diastolic function in people with heart failure(HF)are correlated with iron status;however,the causality is uncertain.This Mendelian randomization(MR)study investigated the bidirectional causal relationship between systemic iron parameters and LV structure and function in a preserved ejection fraction population.METHODS Transferrin saturation(TSAT),total iron binding capacity(TIBC),and serum iron and ferritin levels were extracted as instrumental variables for iron parameters from meta-analyses of public genome-wide association studies.Individuals without myocardial infarction history,HF,or LV ejection fraction(LVEF)<50%(n=16,923)in the UK Biobank Cardiovascular Magnetic Resonance Imaging Study constituted the outcome dataset.The dataset included LV end-diastolic volume,LV endsystolic volume,LV mass(LVM),and LVM-to-end-diastolic volume ratio(LVMVR).We used a two-sample bidirectional MR study with inverse variance weighting(IVW)as the primary analysis method and estimation methods using different algorithms to improve the robustness of the results.RESULTS In the IVW analysis,one standard deviation(SD)increased in TSAT significantly correlated with decreased LVMVR(β=-0.1365;95%confidence interval[CI]:-0.2092 to-0.0638;P=0.0002)after Bonferroni adjustment.Conversely,no significant relationships were observed between other iron and LV parameters.After Bonferroni correction,reverse MR analysis showed that one SD increase in LVEF significantly correlated with decreased TSAT(β=-0.0699;95%CI:-0.1087 to-0.0311;P=0.0004).No heterogeneity or pleiotropic effects evidence was observed in the analysis.CONCLUSIONS We demonstrated a causal relationship between TSAT and LV remodeling and function in a preserved ejection fraction population. 展开更多
关键词 FRACTION function PARAMETERS
下载PDF
The Probability Density Function Related to Shallow Cumulus Entrainment Rate and Its Influencing Factors in a Large-Eddy Simulation 被引量:3
18
作者 Lei ZHU Chunsong LU +5 位作者 Xiaoqi XU Xin HE Junjun LI Shi LUO Yuan WANG Fan WANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第1期173-187,共15页
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri... The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization. 展开更多
关键词 large-eddy simulation cumulus clouds entrainment rate probability density functions spatial and temporal distribution
下载PDF
Combined Promoting Effects of Specific Organic Functional Groups and Alumina Surface Characteristics for the Design of a Highly Efficient NiMo/Al_(2)O_(3) Hydrodesulfurization Catalyst 被引量:2
19
作者 Li Huifeng Li Mingfeng +2 位作者 Zhang Le Wang Wei Nie Hong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期1-11,共11页
To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation betwe... To prepare a highly efficient NiMo/Al_(2)O_(3) hydrodesulfurization catalyst,the combined effects of specific organic functional groups and alumina surface characteristics were investigated.First,the correlation between the surface characteristics of four different alumina and the existing Mo species states was established.It was found that the Mo equilibrium adsorption capacity can be used as a specific descriptor to quantitatively evaluate the changes in surface characteristics of different alumina.A lower Mo equilibrium adsorption capacity for alumina means weaker metal-support interaction and the loaded Mo species are easier to transform into MoS2.However,the Mo-O-Al bonds still exist at the metal-support interface.The introduction of cationic surfactant hecadecyl trimethyl ammonium bromide(CTAB)can further improve Mo species dispersion through electrostatic attraction with Mo anions and interaction of its alkyl chain with the alumina surface;meanwhile,the introduction of ethylenediamine tetraacetic acid(EDTA)can complex with Ni ions to enhance the Ni-promoting effect on Mo.Therefore,the NiMo catalyst designed using alumina with lower Mo equilibrium adsorption capacity and the simultaneous addition of EDTA and CTAB exhibits the highest hydrodesulfurization activity for 4,6-dimethyl dibenzothiophene because of its proper metal-support interaction and more well-dispersed Ni-Mo-S active phases. 展开更多
关键词 ALUMINA Mo equilibrium adsorption capacity organic functional groups metal-support interaction HYDRODESULFURIZATION
下载PDF
Type-B monoamine oxidase inhibitors in neurological diseases:clinical applications based on preclinical findings 被引量:2
20
作者 Marika Alborghetti Edoardo Bianchini +3 位作者 Lanfranco De Carolis Silvia Galli Francesco E.Pontieri Domiziana Rinaldi 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期16-21,共6页
Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced ... Type-B monoamine oxidase inhibitors,encompassing selegiline,rasagiline,and safinamide,are available to treat Parkinson's disease.These drugs ameliorate motor symptoms and improve motor fluctuation in the advanced stages of the disease.There is also evidence suppo rting the benefit of type-B monoamine oxidase inhibitors on non-motor symptoms of Parkinson's disease,such as mood deflection,cognitive impairment,sleep disturbances,and fatigue.Preclinical studies indicate that type-B monoamine oxidase inhibitors hold a strong neuroprotective potential in Parkinson's disease and other neurodegenerative diseases for reducing oxidative stress and stimulating the production and release of neurotrophic factors,particularly glial cell line-derived neurotrophic factor,which suppo rt dopaminergic neurons.Besides,safinamide may interfere with neurodegenerative mechanisms,countera cting excessive glutamate overdrive in basal ganglia motor circuit and reducing death from excitotoxicity.Due to the dual mechanism of action,the new generation of type-B monoamine oxidase inhibitors,including safinamide,is gaining interest in other neurological pathologies,and many supporting preclinical studies are now available.The potential fields of application concern epilepsy,Duchenne muscular dystrophy,multiple scle rosis,and above all,ischemic brain injury.The purpose of this review is to investigate the preclinical and clinical pharmacology of selegiline,rasagiline,and safinamide in Parkinson's disease and beyond,focusing on possible future therapeutic applications. 展开更多
关键词 glial cell line-derived neurotrophic factor(GDNF) GLUTAMATE neurological disorders NEUROPROTECTION Parkinson's disease preclinical studies RASAGILINE SAFINAMIDE SELEGILINE type-B monoamine oxidase(MAO_(B))inhibitors
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部