期刊文献+
共找到864篇文章
< 1 2 44 >
每页显示 20 50 100
Modulation of the Nogo signaling pathway to overcome amyloid-β-mediated neurite inhibition in human pluripotent stem cell-derived neurites
1
作者 Kirsty Goncalves Stefan Przyborski 《Neural Regeneration Research》 SCIE CAS 2025年第9期2645-2654,共10页
Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is be... Neuronal cell death and the loss of connectivity are two of the primary pathological mechanisms underlying Alzheimer's disease.The accumulation of amyloid-βpeptides,a key hallmark of Alzheimer's disease,is believed to induce neuritic abnormalities,including reduced growth,extension,and abnormal growth cone morphology,all of which contribute to decreased connectivity.However,the precise cellular and molecular mechanisms governing this response remain unknown.In this study,we used an innovative approach to demonstrate the effect of amyloid-βon neurite dynamics in both two-dimensional and three-dimensional cultu re systems,in order to provide more physiologically relevant culture geometry.We utilized various methodologies,including the addition of exogenous amyloid-βpeptides to the culture medium,growth substrate coating,and the utilization of human-induced pluripotent stem cell technology,to investigate the effect of endogenous amyloid-βsecretion on neurite outgrowth,thus paving the way for potential future applications in personalized medicine.Additionally,we also explore the involvement of the Nogo signaling cascade in amyloid-β-induced neurite inhibition.We demonstrate that inhibition of downstream ROCK and RhoA components of the Nogo signaling pathway,achieved through modulation with Y-27632(a ROCK inhibitor)and Ibuprofen(a Rho A inhibitor),respectively,can restore and even enhance neuronal connectivity in the presence of amyloid-β.In summary,this study not only presents a novel culture approach that offers insights into the biological process of neurite growth and inhibition,but also proposes a specific mechanism for reduced neural connectivity in the presence of amyloid-βpeptides,along with potential intervention points to restore neurite growth.Thereby,we aim to establish a culture system that has the potential to serve as an assay for measuring preclinical,predictive outcomes of drugs and their ability to promote neurite outgrowth,both generally and in a patient-specific manner. 展开更多
关键词 Alzheimer's disease induced pluripotent stem cell neurite outgrowth neuron NOGO Rho A ROCK stem cell three-dimensional culture
下载PDF
Chondroitinase ABC combined with Schwann cell transplantation enhances restoration of neural connection and functional recovery following acute and chronic spinal cord injury
2
作者 Wenrui Qu Xiangbing Wu +13 位作者 Wei Wu Ying Wang Yan Sun Lingxiao Deng Melissa Walker Chen Chen Heqiao Dai Qi Han Ying Ding Yongzhi Xia George Smith Rui Li Nai-Kui Liu Xiao-Ming Xu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1467-1482,共16页
Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration... Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties.A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury.A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity,and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar,thus limiting axonal reentry into the host spinal cord.Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury.We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders,Schwann cells migrated for considerable distances in both rostral and caudal directions.Such Schwann cell migration led to enhanced axonal regrowth,including the serotonergic and dopaminergic axons originating from supraspinal regions,and promoted recovery of locomotor and urinary bladder functions.Importantly,the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury,even when treatment was delayed for 3 months to mimic chronic spinal cord injury.These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury. 展开更多
关键词 axonal regrowth bladder function chondroitinase ABC functional recovery glial scar LENTIVIRUS migration Schwann cell spinal cord injury TRANSPLANTATION
下载PDF
Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms
3
作者 Xiaoyun Qiu Yuanzhi Yang +3 位作者 Xiaoli Da Yi Wang Zhong Chen Cenglin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第5期1056-1063,共8页
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons.An increasing body of evidence suggests that in the presence of inflammation and nerve damage,a significant number of... Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons.An increasing body of evidence suggests that in the presence of inflammation and nerve damage,a significant number of satellite glial cells become activated,thus triggering a series of functional changes.This suggests that satellite glial cells are closely related to the occurrence of chronic pain.In this review,we first summarize the morphological structure,molecular markers,and physiological functions of satellite glial cells.Then,we clarify the multiple key roles of satellite glial cells in chronic pain,including gap junction hemichannel Cx43,membrane channel Pannexin1,K channel subunit 4.1,ATP,purinergic P2 receptors,and a series of additional factors and their receptors,including tumor necrosis factor,glutamate,endothelin,and bradykinin.Finally,we propose that future research should focus on the specific sorting of satellite glial cells,and identify genomic differences between physiological and pathological conditions.This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain. 展开更多
关键词 chronic pain primary sensory neurons satellite glial cells sensory ganglia
下载PDF
Intrastriatal glial cell line-derived neurotrophic factors for protecting dopaminergic neurons in the substantia nigra of mice with Parkinson disease 被引量:4
4
作者 Chenghua Xiao Yanqiang Wang +3 位作者 Hongmei Liu Hongjun Wang Junping Cao Dianshuai Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2007年第4期207-210,共4页
BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher diff... BACKGROUND: Substantia nigra is deep in position and limited in range, the glial cell line-derived neurotrophic factor (GDNF) injection directly into substantia nigra has relatively greater damages with higher difficulty. GDNF injection into striatum, the target area of dopaminergic neuron, may protect the dopaminergic neurons in the compact part of substantia nigra through retrograde transport. OBJECTIVE: To investigate the protective effect of intrastriatal GDNF on dopaminergic neurons in the substantia nigra of mice with Parkinson disease (PD), and analyze the action pathway. DESIGN: A controlled observation. SETTING: Neurobiological Laboratory of Xuzhou Medical College. MATERIALS: Twenty-four male Kunming mice of 7 - 8 weeks old were used. GDNF, 1-methy1-4-pheny1-1,2,3,6-tetrahydropyridine (MPTP) were purchased from Sigma Company (USA); LEICAQWin image processing and analytical system. METHODS: The experiments were carded out in the Neurobiological Laboratory of Xuzhou Medical College from September 2005 to October 2006. The PD models were established in adult KunMing mice by intraperitoneal injection of MPTP. The model mice were were randomly divided into four groups with 6 mice in each group: GDNF 4-day group, phosphate buffer solution (PSB) 4-day group, GDNF 6-day group and PSB 6-day group. Mice in the GDNF 4 and 6-day groups were administrated with 1 μ L GDNF solution (20 μ g/L, dispensed with 0.01 mol/L PBS) injected into right striatum at 4 and 6 days after model establishment. Mice in the PSB 4 and 6-day groups were administrated with 0.01 mol/L PBS of the same volume to the same injection at corresponding time points. ② On the 12^th day after model establishment, the midbrain tissue section of each mice was divided into 3 areas from rostral to caudal sides. The positive neurons of tyroxine hydroxylase (TH) and calcium binding protein (CB) with obvious nucleolus and clear outline were randomly selected for the measurement, and the number of positive neurons in unit area was counted. MAIN OUTCOME MEASURES: Number of positive neurons of TH and CB in midbrain substantia nigra of mice in each group. RESULTS: All the 24 mice were involved in the analysis of results. The numbers of TH^+ and CB^+ neurons in the GDNF 4-day group (54.33±6.92, 46.33±5.54) were obviously more than those in the PBS 4-day group (27.67±5.01, 21.50±5.96, P 〈 0.01). The numbers of TH^+ and CB^+ neurons in the GDNF 6-day group (75.67±5.39, 69.67±8.69) were obviously more than those in the PBS 6-day group (27.17±4.50, 21.33 ±5.72, P 〈 0.01) and those in the GDNF 4-day group (P 〈 0.01 ). CONCLUSION: Intrastriatal GDNF can protect dopaminergic neurons in substantia nigra of PD mice, and it may be related to the increase of CB expression. 展开更多
关键词 glial cell line-derived neurotrophic factor (GDNF) dopaminergic neurons 1 -methy1-4-pheny1- 1 2 3 6-tetrahydropyridine (MPTP)
下载PDF
A novel primary culture method for high-purity satellite glial cells derived from rat dorsal root ganglion 被引量:1
5
作者 Xian-Bin Wang Wei Ma +5 位作者 Tao Luo Jin-Wei Yang Xiang-Peng Wang Yun-Fei Dai Jian-Hui Guo Li-Yan Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第2期339-345,共7页
Satellite glial cells surround neurons within dorsal root ganglia. Previous studies have focused on single-cell suspensions of cultured neurons derived from rat dorsal root ganglia. At present, the primary culture met... Satellite glial cells surround neurons within dorsal root ganglia. Previous studies have focused on single-cell suspensions of cultured neurons derived from rat dorsal root ganglia. At present, the primary culture method for satellite glial cells derived from rat dorsal root ganglia requires no digestion skill. Hence, the aim of the present study was to establish a novel primary culture method for satellite glial cells derived from dorsal root ganglia. Neonatal rat spine was collected and an incision made to expose the transverse protrusion and remove dorsal root ganglia. Dorsal root ganglia were freed from nerve fibers, connective tissue, and capsule membranes, then rinsed and transferred to 6-well plates, and cultured in a humidified 5% CO_2 incubator at 37°C. After 3 days in culture, some cells had migrated from dorsal root ganglia. After subculture, cells were identified by immunofluorescence labeling for three satellite glial cell-specific markers: glutamine synthetase, glial fibrillary acidic protein, and S100β. Cultured cells expressed glutamine synthetase, glial fibrillary acidic protein, and S100β, suggesting they are satellite glial cells with a purity of > 95%. Thus, we have successfully established a novel primary culture method for obtaining high-purity satellite glial cells from rat dorsal root ganglia without digestion. 展开更多
关键词 nerve REGENERATION cell culture dorsal root GANGLIA IMMUNOFLUORESCENCE identification SATELLITE glial cells neural REGENERATION
下载PDF
Use of RNAi silencing to target preconditioned glial cell line-derived neurotrophic factor in neuronal apoptosis 被引量:1
6
作者 Hongliang Guo Xinhua Li +7 位作者 Jing Mang Ying Xing Jinting He Guihua Xu Shijun Yan LifengLiu Chunli Mei Zhongxin Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第7期510-516,共7页
Several studies have suggested that exogenous glial cell line-derived neurotrophic factor may pro-tect neurons from cerebral ischemic injury. However, the mechanisms underlying the neuroprotec-tive effects of endogeno... Several studies have suggested that exogenous glial cell line-derived neurotrophic factor may pro-tect neurons from cerebral ischemic injury. However, the mechanisms underlying the neuroprotec-tive effects of endogenous glial cell line-derived neurotrophic factor remain unclear. The present experiments sought to elucidate the influence of various conditioned media on neuronal apoptosis, using a normal culture medium for astrocytes, an astrocyte medium highly expressing glial cell line-derived neurotrophic factor, and an astrocyte medium in which glial cell line-derived neurotro-phic factor expression was silenced using RNAi technology. The results confirmed that the use of RNAi silencing to target pretreated glial cell line-derived neurotrophic factor expression promoted neuronal apoptosis. In addition, oxygen and glucose deprivation preconditioning was found to upregulate glial cell line-derived neurotrophic factor expression, and significantly reduce neuronal apoptosis. 展开更多
关键词 glial cell line-derived neurotrophic factor ASTROCYTE neuron short interfering RNA APOPTOSIS neural regeneration
下载PDF
Bis(7)-Tacrine, a Promising Anti-Alzheimer's Agent,Attenuates Glutamate-Induced Cell Injury in Primary Cultured Cerebrocortical Neurons of Rats 被引量:1
7
作者 Zhang Bai fang,Peng Fang fang,Zhang Jiang zhou,Wu Dong cheng Biochemistry Department, School of Medicine, Wuhan University, Wuhan 430071, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第3期737-741,共5页
The effects of bis(7) tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate induced cell injury were investigated in primary cerebral cortical neurons of rats. Exposure of cultured neurons (1... The effects of bis(7) tacrine, a novel dimeric acetylcholinesterase (AChE) inhibitor, on glutamate induced cell injury were investigated in primary cerebral cortical neurons of rats. Exposure of cultured neurons (12 days after plating) to 0.5 mmol/L glutamate for 30 min resulted in significant cell damage. Pretreatment with bis(7) tacrine (0.03 1.0 μmol/L) reduced the glutamate induced neurotoxicity in a concentration dependent manner and the maximal response was seen at 1 μmol/L with approximately 30% protection. A receptor binding assay showed that bis(7) tacrine can completely displace MK 801 binding to rat cortical membrane with an IC 50 of 0.57 μmol/L. These findings suggest that bis(7) tacrine can directly interact with N methyl D aspartate receptor channel complex, which may contribute to the inhibitor's protective effects against glutamate induced excitotoxicity. Thus, it is possible that anti glutamate/anti AChE synergism is responsible for potentially better Alzheimer's therapy of bis(7) tacrine relative to tacrine. 展开更多
关键词 bis(7) tacrine TACRINE cholinesterase inhibitor GLUTAMATE primary neuronal cell culture
下载PDF
Generation of functionally mature neurons from a telomerase-immortalized human glial progenitor cell line
8
作者 Yun Bai Xiaoyan Zhang Aili Lu Juniun Xiao Li Shen 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第2期106-110,共5页
BACKGROUND: It has long been thought that neurons and glial cells are produced from distinct progenitor pools, but recent studies suggest that the glial progenitor cell in the subventricular zone can generate neurons... BACKGROUND: It has long been thought that neurons and glial cells are produced from distinct progenitor pools, but recent studies suggest that the glial progenitor cell in the subventricular zone can generate neurons in the adult rodent brain. OBJECTIVE: To investigate the ability of a telomerase-immortalized human glial progenitor cell line to differentiate into functionally mature neurons. DESIGN, TIME AND SETTING: The cellular and molecular biology experiment was performed at the Cell Biology Laboratory in the School of Basic Medical Sciences, Peking University Health Science Center, between July 2007 and May 2008. MATERIALS: A telomerase reverse transcriptase immortalized human glial progenitor cell line, was established in our laboratory. Dibutyryl cyclic AMP was purchased from Sigma (USA). Specific antibodies against glial fibrillary acidic protein, ~ -tubulin-Ⅲand A2B5 were purchased from Chemicon, USA. Polyclonal antibodies against nestin and MAP2ab were obtained from Neomarker, USA. METHODS: The telomerase immortalized human glial progenitor cell line was passaged and maintained in growth medium consisting of DMEM/F12 (1:1) with N2 supplement (1%, v/v), L-Glutamine (2 mmol/L), epidermal growth factor (20 ng/mL), basic fibroblast growth factor (20 ng/mL) and 3% fetal bovine serum. Neuronal differentiation was induced by the addition of 1 mmol/L dibutyryl cyclic AMP and 10% fetal bovine serum. MAIN OUTCOME MEASURES: Neuronal differentiation was evaluated by RT-PCR, quantitative PCR, immunofluorescence staining, Western blot analysis and electrophysiology. RESULTS: After dibutyryl cyclic AMP induction in the telomerase immortalized human glial progenitor cells, the expression of neuronal-specific marker mRNAs and proteins increased significantly. Concurrently, an apparent fast inward Na^+ current was evoked in the cells after induction. CONCLUSION: This study suggests that some human glial progenitor ceils are indeed capable of generating functionally mature neurons, and such cells may be useful for treating human neurological disorders. 展开更多
关键词 TELOMERASE IMMORTALIZATION human glial progenitor cells neuronal differentiation
下载PDF
Lysosomal Enzyme Activities in Cultured Retinal Pigment Epithelial and Glial Cells of RCS Rat
9
作者 Hiroaki Naka Hiroshi Kuriyama +1 位作者 Shinsuke Kojima Shunji Tsuboi 《Eye Science》 CAS 1996年第1期20-27,共8页
Purpose: To compare the activities of acid phosphatase, N-acetyl-β-glu-cosaminidase and a- mannosidase in cultured retinal pigment epithelium (RPE)and glial cells of Royal College of Surgeons (RCS) rat with those in ... Purpose: To compare the activities of acid phosphatase, N-acetyl-β-glu-cosaminidase and a- mannosidase in cultured retinal pigment epithelium (RPE)and glial cells of Royal College of Surgeons (RCS) rat with those in Long Evans(LE).Methods: The cultured RPE and glial cells of RCS and LE rat were plated into thesame 96 well microtitre, and the biochemical method in microsystem were usedfor enzyme assays.Results: The activities of acid phosphatase and N-acetyl- β-glucosaminidase arehigher by, respectively, 30% and 46% in cultured RPE of RCS rat than LE rat.The activity of a- mannosidase has no significant difference. The activities of 3enzymes in the retinal glial cells derived from RCS rats are higher than LE rat by43% to 77%.Conclusion: These results suggest that the high activities of lysosomal enzymes inRCS RPE and glial cells may play an important role in the pathogenesis of retinaldystrophy. Eye Science 1996; 12:20-27. 展开更多
关键词 RCS rat RETINAL PIGMENT EPITHELIUM glial cell LYSOSOMAL enzyme cell culture
下载PDF
Depletion of Glial Cell Line-Derived Neurotrophic Factor by Disuse Muscle Atrophy Exacerbates the Degeneration of Alpha Motor Neurons in Caudal Regions Remote from the Spinal Cord Injury
10
作者 Yu-Ichiro Ohnishi Koichi Iwatsuki Toshiki Yoshimine 《Neuroscience & Medicine》 2014年第5期214-221,共8页
We have been previously reported that disuse muscle atrophy exacerbates both motor neuron (MN) degeneration in caudal regions remote from a spinal cord injury, and decrease in glial cell line-derived neurotrophic fact... We have been previously reported that disuse muscle atrophy exacerbates both motor neuron (MN) degeneration in caudal regions remote from a spinal cord injury, and decrease in glial cell line-derived neurotrophic factor (GDNF) protein level in paralyzed muscle. In this study we found that disuse muscle atrophy exacerbated the decrease in GDNF protein level in the L4/5 spinal cord, which was not immunopositive for GDNF. Our results were consistent with the fact that in the lumbar spinal cord of rats with mid-thoracic contusion, GDNF expression was not detected, while expression of GDNF receptors (GFRα1 and RET) was. Our study showed that administration of exogenous recombinant GDNF into the atrophic muscle partially rescued α-MN degeneration in the L4/5 spinal cord. These results suggest that the depletion of GDNF protein by muscle atrophy exacerbates α-MN degeneration in caudal regions remote from the injury. 展开更多
关键词 DISUSE Muscle ATROPHY Motor neuron DEGENERATION glial cell Line-Derived NEUROTROPHIC Factor
下载PDF
Endogenous retinal neural stem cell reprogramming for neuronal regeneration 被引量:8
11
作者 Romain Madelaine Philippe Mourrain 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第11期1765-1767,共3页
In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by perma- nent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal... In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by perma- nent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Miiller glial cells. Following injury, zebrafish Miiller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Mtiller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from ze- brafish and mammalian Mtiller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Mtiller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases. 展开更多
关键词 neuronal regeneration RETINA Muller glial cells neural stem cell reprogramming achaete-scute homolog 1 microRNA-9 Tlx Onecut
下载PDF
Regional brain susceptibility to neurodegeneration: what is the role of glial cells? 被引量:4
12
作者 Andrea Beatriz Cragnolini Giorgia Lampitella +4 位作者 Assunta Virtuoso Immacolata Viscovo Fivos Panetsos Michele Papa Giovanni Cirillo 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第5期838-842,共5页
The main pathological feature of the neurodegenerative diseases is represented by neuronal death that represents the final step of a cascade of adverse/hostile events.Early in the neurodegenerative process,glial cells... The main pathological feature of the neurodegenerative diseases is represented by neuronal death that represents the final step of a cascade of adverse/hostile events.Early in the neurodegenerative process,glial cells (including astrocytes,microglial cells,and oligodendrocytes) activate and trigger an insidious neuroinflammatory reaction,metabolic decay,blood brain barrier dysfunction and energy impairment,boosting neuronal death.How these mechanisms might induce selective neuronal death in specific brain areas are far from being elucidated.The last two decades of neurobiological studies have provided evidence of the main role of glial cells in most of the processes of the central nervous system,from development to synaptogenesis,neuronal homeostasis and integration into,highly specific neuro-glial networks.In this mini-review,we moved from in vitro and in vivo models of neurodegeneration to analyze the putative role of glial cells in the early mechanisms of neurodegeneration.We report changes of transcriptional,genetic,morphological,and metabolic activity in astrocytes and microglial cells in specific brain areas before neuronal degeneration,providing evidence in experimental models of neurodegenerative disorders,including Parkinson’s and Alzheimer’s diseases.Understanding these mechanisms might increase the insight of these processes and pave the way for new specific glia-targeted therapeutic strategies for neurodegenerative disorders. 展开更多
关键词 ASTROCYTES glial cells microglia NEURODEGENERATIVE diseases neuroinflammation Parkinson's disease reactive GLIOSIS selective neuronal degeneration
下载PDF
Stem cell therapy for central nerve system injuries: glial cells hold the key 被引量:3
13
作者 Li Xiao Chikako Saiki Ryoji Ide 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第13期1253-1260,共8页
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regener... Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells' behavior to create a permissive microenvironment for neuronal stem cells. 展开更多
关键词 neuron regeneration stem cell therapy glial cells MICROENVIRONMENT oligodendrocyteregeneration CNS injury
下载PDF
Regulatory effects of inhibiting the activation of glial cells on retinal synaptic plasticity 被引量:2
14
作者 Lihong Zhou Hui Wang +4 位作者 Jia Luo Kun Xiong Leping Zeng Dan Chen Jufang Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第4期385-393,共9页
Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still uncle... Various retinal injuries induced by ocular hypertension have been shown to induce plastic changes in retinal synapses, but the potential regulatory mechanism of synaptic plasticity after retinal injury was still unclear. A rat model of acute ocular hypertension was established by injecting saline intravitreally for an hour, and elevating the intraocular pressure to 14.63 kPa (110 mmHg). Western blot assay and immunofluorescence results showed that synaptophysin expression had a distinct spatiotemporal change that increased in the inner plexiform layer within 1 day and spread across the outer plexiform layer after 3 days. Glial fibrillary acidic protein expression in retinae was greatly increased after 3 days, and reached a peak at 7 days, which was also consistent with the peak time of synaptophysin expression in the outer plexiform layer following the increased intraocular pressure. Fluorocitrate, a glial metabolic inhibitor, was intravitreally injected to inhibit glial cell activation following high intraocular pressure. This significantly inhibited the enhanced glial fibrillary acidic protein expression induced by high intraocular pressure injury. Synaptophysin expression also decreased in the inner plexiform layer within a day and the widened distribution in the outer plexiform layer had disappeared by 3 days. The results suggested that retinal glial cell activation might play an important role in the process of retinal synaptic plasticity induced by acute high intraocular pressure through affecting the expression and distribution of synaptic functional proteins, such as synaptophysin. 展开更多
关键词 nerve regeneration neuronal plasticity retina synapses SYNAPTOPHYSIN glial cells highintraocular pressure FLUOROCITRATE glial fibrillary acidic protein NSFC grant neural regeneration
下载PDF
Migration of R28 Retinal Precursor Cells into Cochlear and Vestibular Organs 被引量:3
15
作者 Gail Seigel Richard Salvi 《Journal of Otology》 2006年第1期51-56,共6页
Damaged hair cells and neurons in the inner ear generally can not be replaced in mammals. The loss of these cells causes permanent functional disorders in both the cochlear and vestibular systems. Transplantation of r... Damaged hair cells and neurons in the inner ear generally can not be replaced in mammals. The loss of these cells causes permanent functional disorders in both the cochlear and vestibular systems. Transplantation of retinal precursor cells, R28 cells, into inner ear tissue may help replace missing cells. The aim of the current project was to induce R28 cell transdifferentiation into cochlear and vestibular cell types under culture conditions. The first part was related to R28 cell labeling with DiI fluorescence that would help identify and track R28 cells. The second part involved co-culturing R28 cells in cochlear and vestibular organotropic cultures or isolated spiral ganglion neurons. The results suggest that R28 cells have the potential to differentiate into supporting cell types and spiral ganglion neurons in serum free medium, probably under the influence of diffusible signals from inner ear tissues. This information is useful for future efforts in inducing stem cell differentiation in the inner ear to replace lost sensory and neural cells. 展开更多
关键词 retinal precursor cells COCHLEA VESTIBULE spiral ganglion neuron culture
下载PDF
Electroacupuncture promotes peripheral nerve regeneration after facial nerve crush injury and upregulates the expression of glial cell-derived neurotrophic factor 被引量:26
16
作者 Jing Fei Lin Gao +2 位作者 Huan-Huan Li Qiong-Lan Yuan Lei-Ji Li 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第4期673-682,共10页
The efficacy of electroacupuncture in the treatment of peripheral facial paralysis is known, but the specific mechanism has not been clarified. Glial cell-derived neurotrophic factor(GDNF) has been shown to protect ne... The efficacy of electroacupuncture in the treatment of peripheral facial paralysis is known, but the specific mechanism has not been clarified. Glial cell-derived neurotrophic factor(GDNF) has been shown to protect neurons by binding to N-cadherin. Our previous results have shown that electroacupuncture could increase the expression of N-cadherin mRNA in facial neurons and promote facial nerve regeneration. In this study, the potential mechanisms by which electroacupuncture promotes nerve regeneration were elucidated through assessing the effects of electroacupuncture on GDNF and N-cadherin expression in facial motoneurons of rabbits with peripheral facial nerve crush injury. New Zealand rabbits were randomly divided into a normal group(normal control, n = 21), injury group(n = 45) and electroacupuncture group(n = 45). Model rabbits underwent facial nerve crush injury only. Rabbits in the electroacupuncture group received facial nerve injury, and then underwent electroacupuncture at Yifeng(TE17), Jiache(ST6), Sibai(ST2), Dicang(ST4), Yangbai(GB14), Quanliao(SI18), and Hegu(LI4; only acupuncture, no electrical stimulation). The results showed that in behavioral assessments, the total scores of blink reflex, vibrissae movement, and position of apex nasi, were markedly lower in the EA group than those in the injury group. Hematoxylin-eosin staining of the right buccinator muscle of each group showed that the cross-sectional area of buccinator was larger in the electroacupuncture group than in the injury group on days 1, 14 and 21 post-surgery. Toluidine blue staining of the right facial nerve tissue of each group revealed that on day 14 post-surgery, there was less axonal demyelination and fewer inflammatory cells in the electroacupuncture group compared with the injury group. Quantitative real time-polymerase chain reaction showed that compared with the injury group, N-cadherin mRNA levels on days 4, 7, 14 and 21 and GDNF mRNA levels on days 4, 7 and 14 were significantly higher in the electroacupuncture group. Western blot assay displayed that compared with the injury group, the expression of GDNF protein levels on days 7, 14 and 21 were significantly upregulated in the electroacupuncture group. The histology with hematoxylin-eosin staining and Nissl staining of brainstem tissues containing facial neurons in the middle and lower part of the pons exhibited that on day 7 post-surgery, there were significantly fewer apoptotic neurons in the electroacupuncture group than in the injury group. By day 21, there was no significantly difference in the number of neurons between the electroacupuncture and normal groups. Taken together, these results have confirmed that electroacupuncture promotes regeneration of peripheral facial nerve injury in rabbits, inhibits neuronal apoptosis, and reduces peripheral inflammatory response, resulting in the recovery of facial muscle function. This is achieved by up-regulating the expression of GDNF and N-cadherin in central facial neurons. 展开更多
关键词 NERVE REGENERATION FACIAL paralysis ELECTROACUPUNCTURE glial cell-derived neurotrophic factor N-cadherin crush injury neuronal apoptosis FACIAL neuron NERVE DEMYELINATION neural REGENERATION
下载PDF
Differential expression of glial cell line-derived neurotrophic factor splice variants in the mouse brain 被引量:1
17
作者 Xiao-He Gu Heng Li +4 位作者 Lin Zhang Tao He Xiang Chai He Wei Dian-Shuai Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第2期270-276,共7页
Glial cell line-derived neurotrophic factor(GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain,α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neu... Glial cell line-derived neurotrophic factor(GDNF) plays a critical role in neuronal survival and function. GDNF has two major splice variants in the brain,α-pro-GDNF and β-pro-GDNF, and both isoforms have strong neuroprotective effects on dopamine neurons. However, the expression of the GDNF splice variants in dopaminergic neurons in the brain remains unclear. Therefore, in this study, we investigated the mRNA and protein expression of α-and β-pro-GDNF in the mouse brain by real-time quantitative polymerase chain reaction, using splice variant-specific primers, and western blot analysis. At the mRNA level,β-pro-GDNF expression was significantly greater than that of α-pro-GDNF in the mouse brain. In contrast, at the protein level,α-pro-GDNF expression was markedly greater than that of β-pro-GDNF. To clarify the mechanism underlying this inverse relationship in mRNA and protein expression levels of the GDNF splice variants, we analyzed the expression of sorting protein-related receptor with A-type repeats(SorLA) by real-time quantitative polymerase chain reaction. At the mRNA level, SorLA was positively associated with β-pro-GDNF expression, but not with α-pro-GDNF expression. This suggests that the differential expression of α-and β-pro-GDNF in the mouse brain is related to SorLA expression. As a sorting protein, SorLA could contribute to the inverse relationship among the mRNA and protein levels of the GDNF isoforms. This study was approved by the Animal Ethics Committee of Xuzhou Medical University, China on July 14, 2016. 展开更多
关键词 Δ78 locus BRAIN region DOPAMINERGIC neurons glial cell line-derived NEUROTROPHIC factor mouse BRAIN precursor protein α-pro-GDNF β-pro-GDNF sorting protein-related receptor with A-type REPEATS splice variants
下载PDF
Seeing the wood for the trees:towards improved quantification of glial cells in central nervous system tissue 被引量:1
18
作者 Sinéad Healy Jill McMahon Una FitzGerald 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1520-1523,共4页
The following mini-review attempts to guide researchers in the quantification of fluorescently-labelled proteins within cultured thick or chromogenically-stained proteins within thin sections of brain tissue.It follow... The following mini-review attempts to guide researchers in the quantification of fluorescently-labelled proteins within cultured thick or chromogenically-stained proteins within thin sections of brain tissue.It follows from our examination of the utility of Fiji Image J thresholding and binarization algorithms.Describing how we identified the maximum intensity projection as the best of six tested for two dimensional(2 D)-rendering of three-dimensional(3 D) images derived from a series of z-stacked micrographs,the review summarises our comparison of 16 global and 9 local algorithms for their ability to accurately quantify the expression of astrocytic glial fibrillary acidic protein(GFAP),microglial ionized calcium binding adapter molecule 1(IBA1) and oligodendrocyte lineage Olig2 within fixed cultured rat hippocampal brain slices.The application of these algorithms to chromogenically-stained GFAP and IBA1 within thin tissue sections,is also described.Fiji’s Bio Voxxel plugin allowed categorisation of algorithms according to their sensitivity,specificity accuracy and relative quality.The Percentile algorithm was deemed best for quantifying levels of GFAP,the Li algorithm was best when quantifying IBA expression,while the Otsu algorithm was optimum for Olig2 staining,albeit with over-quantification of oligodendrocyte number when compared to a stereological approach.Also,GFAP and IBA expression in 3,3′-diaminobenzidine(DAB)/haematoxylin-stained cerebellar tissue was best quantified with Default,Isodata and Moments algorithms.The workflow presented in Figure 1 could help to improve the quality of research outcomes that are based on the quantification of protein with brain tissue. 展开更多
关键词 organotypic brain slice culture glial cell quantification thresholding algorithms Fiji Image J Bio Voxxel plug-in STEREOLOGY
下载PDF
Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro 被引量:8
19
作者 Lei Chen Zhongguo Zhang +7 位作者 Bing Chen Xiaozhi Liu Zhenlin Liu Hongliang Liu Gang Li Zhiguo Su Junfei Wang Guozhen Hui 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第13期972-977,共6页
Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells test... Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro. 展开更多
关键词 human umbilical cord blood purification and culture brain-derived neurotrophic factor neuron-like cells neural regeneration
下载PDF
Neuronal-like differentiation of bone marrow-derived mesenchymal stem cells induced by striatal extracts from a rat model of Parkinson's disease 被引量:3
20
作者 Xiaoling Qin Wang Han Zhigang Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第34期2673-2680,共8页
A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and wer... A rat model of Parkinson's disease was established by 6-hydroxydopamine injection into the medial forebrain bundle. Bone marrow-derived mesenchymal stem cells (BMSCs) were isolated from the femur and tibia, and were co-cultured with 10% and 60% lesioned or intact striatal extracts. The results showed that when exposed to lesioned striatal extracts, BMSCs developed bipolar or multi-polar morphologies, and there was an increase in the percentage of cells that expressed glial fibrillary acidic protein (GFAP), nestin and neuron-specific enolase (NSE). Moreover, the percentage of NSE-positive cells increased with increasing concentrations of lesioned striatal extracts. However, intact striatal extracts only increased the percentage of GFAP-positive cells. The findings suggest that striatal extracts from Parkinson's disease rats induce BMSCs to differentiate into neuronal-like cells in vitro. 展开更多
关键词 bone marrow-derived mesenchymal stem cell Parkinson's disease striatal extract induceddifferentiation nerve cell glial fibrillary acidic protein NESTIN neuron-specific enolase neural stemcell regeneration neural regeneration
下载PDF
上一页 1 2 44 下一页 到第
使用帮助 返回顶部