In recent years,a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions.These nanovesicles (30–150 nm) co...In recent years,a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions.These nanovesicles (30–150 nm) contain proteins,RNAs and lipids,and their internalization by bystander cells could alter their normal functions.This review focuses on recent knowledge about exosomes as messengers of neuron-glia communication and their participation in the physiological and pathological functions in the central nervous system.Special emphasis is placed on the role of exosomes under toxic or pathological stimuli within the brain,in which the glial exosomes containing inflammatory molecules are able to communicate with neurons and contribute to the pathogenesis of neuroinflammation and neurodegenerative disorders.Given the small size and characteristics of exosomes,they can cross the blood-brain barrier and be used as biomarkers and diagnosis for brain disorders and neuropathologies.Finally,although the application potential of exosome is still limited,current studies indicate that exosomes represent a promising strategy to gain pathogenic information to identify therapeutically targets and biomarkers for neurological disorders and neuroinflammation.展开更多
Inflammatory responses,including glial cell activation and peripheral immune cell infiltration,are involved in the pathogenesis of Parkinson’s disease(PD).These inflammatory responses appear to be closely related to ...Inflammatory responses,including glial cell activation and peripheral immune cell infiltration,are involved in the pathogenesis of Parkinson’s disease(PD).These inflammatory responses appear to be closely related to the release of extracellular vesicles,such as exosomes.However,the relationships among different forms of glial cell activation,synuclein dysregulation,mitochondrial dysfunction,and exosomes are complicated.This review discusses the multiple roles played by exosomes in PD-associated inflammation and concludes that exosomes can transport toxicα-synuclein oligomers to immature neurons and into the extracellular environment,inducing the oligomerization ofα-synuclein in normal neurons.Misfoldedα-synuclein causes microglia and astrocytes to activate and secrete exosomes.Glial cell-derived exosomes participate in communications between glial cells and neurons,triggering anti-stress and anti-inflammatory responses,in addition to axon growth.The production and release of mitochondrial vesicles and exosomes establish a new mechanism for linking mitochondrial dysfunction to systemic inflammation associated with PD.Given the relevance of exosomes as mediators of neuron-glia communication in neuroinflammation and neuropathogenesis,new targeted treatment strategies are currently being developed that use these types of extracellular vesicles as drug carriers.Exosome-mediated inflammation may be a promising target for intervention in PD patients.展开更多
基金supported by grants from the Health Ministry,PNSD(2018-I003)Institute Carlos III and FEDER funds(RTA-Network,RD16 0017 0004)+1 种基金Spanish Ministry of Science and Innovation(SAF2015-69187R)FEDER Funds,Generalitat Valenciana
文摘In recent years,a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions.These nanovesicles (30–150 nm) contain proteins,RNAs and lipids,and their internalization by bystander cells could alter their normal functions.This review focuses on recent knowledge about exosomes as messengers of neuron-glia communication and their participation in the physiological and pathological functions in the central nervous system.Special emphasis is placed on the role of exosomes under toxic or pathological stimuli within the brain,in which the glial exosomes containing inflammatory molecules are able to communicate with neurons and contribute to the pathogenesis of neuroinflammation and neurodegenerative disorders.Given the small size and characteristics of exosomes,they can cross the blood-brain barrier and be used as biomarkers and diagnosis for brain disorders and neuropathologies.Finally,although the application potential of exosome is still limited,current studies indicate that exosomes represent a promising strategy to gain pathogenic information to identify therapeutically targets and biomarkers for neurological disorders and neuroinflammation.
基金supported by the National Natural Science Foundation of China,No.81960242(to XLY)Yunnan Applied Basic Research Project of Yunnan Province of China,Nos.2019FE001-048(to XLY),202001AT070001(to XLY),“One Hundred Young and Middle-aged Academic and Technical Backbone”Training Program of Kunming Medical University,No.60118260105(to XLY)Miaozi Project in Science and Technology Innovation Program of Sichuan Province,No.2020JDRC0057(to HYH).
文摘Inflammatory responses,including glial cell activation and peripheral immune cell infiltration,are involved in the pathogenesis of Parkinson’s disease(PD).These inflammatory responses appear to be closely related to the release of extracellular vesicles,such as exosomes.However,the relationships among different forms of glial cell activation,synuclein dysregulation,mitochondrial dysfunction,and exosomes are complicated.This review discusses the multiple roles played by exosomes in PD-associated inflammation and concludes that exosomes can transport toxicα-synuclein oligomers to immature neurons and into the extracellular environment,inducing the oligomerization ofα-synuclein in normal neurons.Misfoldedα-synuclein causes microglia and astrocytes to activate and secrete exosomes.Glial cell-derived exosomes participate in communications between glial cells and neurons,triggering anti-stress and anti-inflammatory responses,in addition to axon growth.The production and release of mitochondrial vesicles and exosomes establish a new mechanism for linking mitochondrial dysfunction to systemic inflammation associated with PD.Given the relevance of exosomes as mediators of neuron-glia communication in neuroinflammation and neuropathogenesis,new targeted treatment strategies are currently being developed that use these types of extracellular vesicles as drug carriers.Exosome-mediated inflammation may be a promising target for intervention in PD patients.