Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Ba...Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme.展开更多
The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in te...The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .展开更多
This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix ine...This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.展开更多
Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel cha...Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.展开更多
Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating exa...Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating examples are also provided to show the importance of our results.展开更多
In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a s...In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.展开更多
The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of a...The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.展开更多
The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical result...The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.展开更多
This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈...This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈ R. The necessary condition for linear multistep methods to be Nτ(0)-stable is given. It is shown that the trapezoidal rule is Nτ(0)-compatible. Figures of stability region for some linear multistep methods are depicted.展开更多
Consider the following neutral delay-differential equations with multiple delays (NMDDE)where γ> 0, L, Mj and Nj are constant complex- value d×d matrices. A sufficient condition for the asymptotic stability o...Consider the following neutral delay-differential equations with multiple delays (NMDDE)where γ> 0, L, Mj and Nj are constant complex- value d×d matrices. A sufficient condition for the asymptotic stability of NMDDE system (0.1) is given. The stability of Butcher's (A,B,C)-method for systems of NMDDE are studied. In addition, we present a parallel diagonally-implicit iteration RK (PDIRK) methods(NPDIRK) for systems of NMDDE, which is easier to be implemented than fully implicit RK methods. We also investigate the stability of a special class of NPDIRK methods by analyzing their stability behaviors of the solutions of (0.1).展开更多
This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of mode...This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.展开更多
In this paper,we introduce a new class of ergodic sequences,pseudo almost periodic sequences,and study the existence of pseudo almost periodic sequences to difference equations.On the basis of these,we investigate the...In this paper,we introduce a new class of ergodic sequences,pseudo almost periodic sequences,and study the existence of pseudo almost periodic sequences to difference equations.On the basis of these,we investigate the existence of pseudo almost periodic solutions for neutral delay differential equations with piecewise constant argument, d/(dt)(y(t)+py(t-1))=qy(2[(t+1)/2])+g(t,y(t),([t])).展开更多
By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral del...By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.展开更多
Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs...Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper.展开更多
The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was a...The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.展开更多
By means of the theory of coincidence degree, sufficient condition for the existence of positive periodic solution to certain neutral delay competition model is obtained.
We present some conditions for the existence and uniqueness of almost periodic solutions to third order neutral delay-differential equations with piecewise constant.
We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form(X(t) +px(t - 1))″′, = a0x(...We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form(X(t) +px(t - 1))″′, = a0x([t]) + a1x([t - 1]) + f(t),where [.] is the greatest integer function, p, a0 and al are nonzero constants, and f(t) is almost automorphic.展开更多
文摘Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme.
基金This work was supported by the National Natural Science Foundation of China (No.60474003).
文摘The problem of delay-dependent stability and passivity for linear neutral systems is discussed. By constructing a novel type Lyapunov-krasovskii functional, a new delay-dependent passivity criterion is presented in terms of linear matrix inequalities (LMIs). Model transformation, bounding for cross terms and selecting free weighting matrices [12-14] are not required in the arguments. Numerical examples show that the proposed criteria are available and less conservative than existing results .
基金This work was supported by the National Natural Science Foundation of China (No. 60274009)the SRFDP (No. 20020145007)the Natural Science Foundation of Liaoning Province (No.20032020).
文摘This paper focuses on the robust H-infinity reliable control for a class of nonlinear neutral delay systems with uncertainties and actuator failures. We design a state feedback controller in terms of linear matrix inequality(LMI)such that the plant satisfies robust H-infinity performance for all admissible uncertainties, and actuator failures among a prespecified subset of actuators. An example is also given to illustrate the effectiveness of the proposed approach.
文摘Asymptotic stability of linear and interval linear fractional-order neutral delay differential systems described by the Caputo-Fabrizio (CF) fractional derivatives is investigated. Using Laplace transform, a novel characteristic equation is derived. Stability criteria are established based on an algebraic approach and norm-based criteria are also presented. It is shown that asymptotic stability is ensured for linear fractional-order neutral delay differential systems provided that the underlying stability criterion holds for any delay parameter. In addition, sufficient conditions are derived to ensure the asymptotic stability of interval linear fractional order neutral delay differential systems. Examples are provided to illustrate the effectiveness and applicability of the theoretical results.
文摘Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating examples are also provided to show the importance of our results.
文摘In this paper, we present a compact finite difference method for a class of fourth-order nonlinear neutral delay sub-diffusion equations in two-dimensional space. The fourth-order problem is first transformed into a second-order system by a reduced-order method. Next by using compact operator to approximate the second order space derivatives and L2-1σ formula to approximate the time fractional derivative, the difference scheme which is fourth order in space and second order in time is obtained. Then, the existence and uniqueness of solution, the convergence rate of and the stability of the scheme are proved. Finally, numerical results are given to verify the accuracy and validity of the scheme.
文摘The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
基金Project supported by the National Education Committee Doctoral Foundation of China (20020558092)
文摘The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10271100 and 10571147)
文摘The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.
基金This work was supported by the NSF of P.R.of China(10271036)
文摘This paper deals with a delay-dependent treatment of linear multistep methods for neutral delay differential equations y'(t) = ay(t) + by(t - τ) + cy'(t - τ), t > 0, y(t) = g(t), -τ≤ t ≤ 0, a,b andc ∈ R. The necessary condition for linear multistep methods to be Nτ(0)-stable is given. It is shown that the trapezoidal rule is Nτ(0)-compatible. Figures of stability region for some linear multistep methods are depicted.
文摘Consider the following neutral delay-differential equations with multiple delays (NMDDE)where γ> 0, L, Mj and Nj are constant complex- value d×d matrices. A sufficient condition for the asymptotic stability of NMDDE system (0.1) is given. The stability of Butcher's (A,B,C)-method for systems of NMDDE are studied. In addition, we present a parallel diagonally-implicit iteration RK (PDIRK) methods(NPDIRK) for systems of NMDDE, which is easier to be implemented than fully implicit RK methods. We also investigate the stability of a special class of NPDIRK methods by analyzing their stability behaviors of the solutions of (0.1).
基金Project supported by the 2010 Yeungnam University Research Grant
文摘This paper is concerned with a delay-dependent state estimator for neutral-type neural networks with mixed timevarying delays and Markovian jumping parameters.The addressed neural networks have a finite number of modes,and the modes may jump from one to another according to a Markov process.By construction of a suitable Lyapunov-Krasovskii functional,a delay-dependent condition is developed to estimate the neuron states through available output measurements such that the estimation error system is globally asymptotically stable in a mean square.The criterion is formulated in terms of a set of linear matrix inequalities(LMIs),which can be checked efficiently by use of some standard numerical packages.
文摘In this paper,we introduce a new class of ergodic sequences,pseudo almost periodic sequences,and study the existence of pseudo almost periodic sequences to difference equations.On the basis of these,we investigate the existence of pseudo almost periodic solutions for neutral delay differential equations with piecewise constant argument, d/(dt)(y(t)+py(t-1))=qy(2[(t+1)/2])+g(t,y(t),([t])).
文摘By employing the generalized Riccati transformation technique,we will establish some new oscillation criteria and study the asymptotic behavior of the nonoscillatory solutions of the second-order nonlinear neutral delay dynamic equation [r(t)[y(t)+p(t)y(■(t))]~Δ]~Δ+q(t)f(y((δ(t)))=0 on a time scale■.The results improve some oscillation results for neutral delay dynamic equations and in the special case when■our results cover and improve the oscillation results for second- order neutral delay differential equations established by Li and Liu[Canad.J.Math.,48(1996), 871 886].When■,our results cover and improve the oscillation results for second order neutral delay difference equations established by Li and Yeh[Comp.Math.Appl.,36(1998),123-132].When ■ ■our results are essentially new.Some examples illustrating our main results are given.
基金supported by National Natural Science Foundation of China (Grant No. 10871164)the Natural Science Foundation of Hunan Province (Grant No. 08JJ6002)the Scientific Research Fund of Changsha University of Science and Technology (Grant No. 1004259)
文摘Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper.
文摘The stability analysis of linear multistep methods for the numerical solutions of the systems of generalized neutral delay differential equations is discussed. The stability behaviour of linear multistep methods was analysed for the solution of the generalized system of linear neutral test equations, After the establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, it is shown that a linear multistep method is NGP(G)-stable if and only if it is A-stable.
文摘By means of the theory of coincidence degree, sufficient condition for the existence of positive periodic solution to certain neutral delay competition model is obtained.
基金supported by NNSF of China (No.11271380)NSF of Guangdong Province (1015160150100003)Foundation for Distinguished Young Talents in Higher Education of Guangdong of China (No.LYM08014)
文摘We present some conditions for the existence and uniqueness of almost periodic solutions to third order neutral delay-differential equations with piecewise constant.
基金supported by National Natural Science Foundation of China(Grant Nos.11271380,11501238)Natural Science Foundation of Guangdong Province(Grant Nos.2014A030313641,2016A030313119,S2013010013212)the Major Project Foundation of Guangdong Province Education Department(No.2014KZDXM070)
文摘We present some conditions for the existence and uniqueness of almost automorphic solutions of third order neutral delay-differential equations with piecewise constant of the form(X(t) +px(t - 1))″′, = a0x([t]) + a1x([t - 1]) + f(t),where [.] is the greatest integer function, p, a0 and al are nonzero constants, and f(t) is almost automorphic.