The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical result...The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.展开更多
Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs...Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper.展开更多
The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of a...The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.展开更多
By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral dela...By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.展开更多
Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with ...Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.展开更多
The aim of this paper is to study the asymptotic stability properties of Runge Kutta(R-K) methods for neutral differential equations(NDDEs) when they are applied to the linear test equation of the form: y′(t)=ay(t)...The aim of this paper is to study the asymptotic stability properties of Runge Kutta(R-K) methods for neutral differential equations(NDDEs) when they are applied to the linear test equation of the form: y′(t)=ay(t)+by(t-τ)+cy’(t-τ), t>0, y(t)=g(t), -τ≤t≤0, with a,b,c∈[FK(W+3mm\.3mm][TPP129A,+3mm?3mm,BP], τ>0 and g(t) is a continuous real value function. In this paper we are concerned with the dependence of stability region on a fixed but arbitrary delay τ. In fact, it is one of the N.Guglielmi open problems to investigate the delay dependent stability analysis for NDDEs. The results that the 2,3 stages non natural R-K methods are unstable as Radau IA and Lobatto IIIC are proved. And the s stages Radau IIA methods are unstable, however all Gauss methods are compatible.展开更多
In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transforma...In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
Consider the neutral differential equation with positive and negative coefficients and unbounded delay ddt[x(t)-P(t)x(h(t))]+Q(t)x(q(t))-R(t)x(r(t))=0, t≥t 0, where P(t)∈C([t 0, ∞), R), Q(t), R(t)∈C([t 0, ∞...Consider the neutral differential equation with positive and negative coefficients and unbounded delay ddt[x(t)-P(t)x(h(t))]+Q(t)x(q(t))-R(t)x(r(t))=0, t≥t 0, where P(t)∈C([t 0, ∞), R), Q(t), R(t)∈C([t 0, ∞), [WTHZ]R +), and h, q, r: [t 0, ∞)→R are continuously differentiable and strictly increasing, h(t)<t, q(t)<t, r(t)<t for all t≥t 0. In this paper, the authors obtain sufficient conditions for the zero solution of this equation with unbounded delay to be uniformly stable as well as asymptotically stable. [WTH1X]展开更多
Delay differential equations (DDEs), as well as neutral delay differential equations (NDDEs), are often used as a fundamental tool to model problems arising from various areas of sciences and engineering. However, NDD...Delay differential equations (DDEs), as well as neutral delay differential equations (NDDEs), are often used as a fundamental tool to model problems arising from various areas of sciences and engineering. However, NDDEs particularly the systems of these equations are special transcendental in nature;it has therefore, become a challenging task or times almost impossible to obtain a convergent approximate analytical solution of such equation. Therefore, this study introduced an analytical method to obtain solution of linear and nonlinear systems of NDDEs. The proposed technique is a combination of Homotopy analysis method (HAM) and natural transform method, and the He’s polynomial is modified to compute the series of nonlinear terms. The presented technique gives solution in a series form which converges to the exact solution or approximate solution. The convergence analysis and the maximum estimated error of the approach are also given. Some illustrative examples are given, and comparison for the accuracy of the results obtained is made with the existing ones as well as the exact solutions. The results reveal the reliability and efficiency of the method in solving systems of NDDEs and can also be used in various types of linear and nonlinear problems.展开更多
In this paper, we study the oscillatory and asymptotic behavior of second order neutral delay difference equation with “maxima” of the form? Examples are given to illustrate the main result.
This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such a...This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.展开更多
Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating exa...Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating examples are also provided to show the importance of our results.展开更多
We consider a system of neutral equations with unbounded delay, and derive conditions on Liapunov functionals to ensure that the solutions are uniformly bounded and uniformly ultimately bounded.
The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some i...Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained b...This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.展开更多
Some new sufficient conditions for the oscillation of the neutral equationddt[y(t)-R(t)y(t-r)]+P(t)y(t-τ)- Q(t)y(t-σ)=0, where P,Q,R∈C([t0,∞),R+) and r,τ,σ∈(0,∞),are obtained for the case whe...Some new sufficient conditions for the oscillation of the neutral equationddt[y(t)-R(t)y(t-r)]+P(t)y(t-τ)- Q(t)y(t-σ)=0, where P,Q,R∈C([t0,∞),R+) and r,τ,σ∈(0,∞),are obtained for the case where former results can not be applied in this paper.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos.10271100 and 10571147)
文摘The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.
基金supported by National Natural Science Foundation of China (Grant No. 10871164)the Natural Science Foundation of Hunan Province (Grant No. 08JJ6002)the Scientific Research Fund of Changsha University of Science and Technology (Grant No. 1004259)
文摘Some convergence results of one-leg methods for nonlinear neutral delay integro-differential equations (NDIDEs) are obtained. It is proved that a one-leg method is E (or EB) -convergent of order p for nonlinear NDIDEs if and only if it is A-stable and consistent of order p in classical sense for ODEs, where p = 1, 2. A numerical example that confirms the theoretical results is given in the end of this paper.
基金Project supported by the National Education Committee Doctoral Foundation of China (20020558092)
文摘The article is concerned with oscillation of nonautonomous neutral dynamic delay equations on time scales. Sufficient conditions are established for the existence of bounded positive solutions and for oscillation of all solutions of this equation. Some results extend known results for difference equations when the time scale is the set Z^+ of positive integers and for differential equations when the time scale is the set IR of real numbers.
文摘By using the averaging technique, we obtain new oscillation criteria for second order delay differential equation with nonlinear neutral term. These results generalize and improve some known results about neutral delay differential equation of second order.
基金Supported by the National Natural Science Foundation of China(11071001)Supported by the NSF of Education Bureau of Anhui Province(KJ2009A005Z,KJ2010ZD02,2010SQRL159)+1 种基金Supported by the 211 Project of Anhui University(KJTD002B)Supported by the Natural Science Foundation of Anhui Province(1208085MA13)
文摘Based on Krasnoselskii's fixed point theorem,matrix measure and functional analysis methods,some new sufficient conditions for the existence of periodic solutions of neutral functional differential equations with distributed and discrete delays are obtained. Moreover,we construct an example to illustrate the feasibility of our results.
文摘The aim of this paper is to study the asymptotic stability properties of Runge Kutta(R-K) methods for neutral differential equations(NDDEs) when they are applied to the linear test equation of the form: y′(t)=ay(t)+by(t-τ)+cy’(t-τ), t>0, y(t)=g(t), -τ≤t≤0, with a,b,c∈[FK(W+3mm\.3mm][TPP129A,+3mm?3mm,BP], τ>0 and g(t) is a continuous real value function. In this paper we are concerned with the dependence of stability region on a fixed but arbitrary delay τ. In fact, it is one of the N.Guglielmi open problems to investigate the delay dependent stability analysis for NDDEs. The results that the 2,3 stages non natural R-K methods are unstable as Radau IA and Lobatto IIIC are proved. And the s stages Radau IIA methods are unstable, however all Gauss methods are compatible.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133,11671157)。
文摘In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L^(∞)-norm and the weighted L^(2)-norm.
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘Consider the neutral differential equation with positive and negative coefficients and unbounded delay ddt[x(t)-P(t)x(h(t))]+Q(t)x(q(t))-R(t)x(r(t))=0, t≥t 0, where P(t)∈C([t 0, ∞), R), Q(t), R(t)∈C([t 0, ∞), [WTHZ]R +), and h, q, r: [t 0, ∞)→R are continuously differentiable and strictly increasing, h(t)<t, q(t)<t, r(t)<t for all t≥t 0. In this paper, the authors obtain sufficient conditions for the zero solution of this equation with unbounded delay to be uniformly stable as well as asymptotically stable. [WTH1X]
文摘Delay differential equations (DDEs), as well as neutral delay differential equations (NDDEs), are often used as a fundamental tool to model problems arising from various areas of sciences and engineering. However, NDDEs particularly the systems of these equations are special transcendental in nature;it has therefore, become a challenging task or times almost impossible to obtain a convergent approximate analytical solution of such equation. Therefore, this study introduced an analytical method to obtain solution of linear and nonlinear systems of NDDEs. The proposed technique is a combination of Homotopy analysis method (HAM) and natural transform method, and the He’s polynomial is modified to compute the series of nonlinear terms. The presented technique gives solution in a series form which converges to the exact solution or approximate solution. The convergence analysis and the maximum estimated error of the approach are also given. Some illustrative examples are given, and comparison for the accuracy of the results obtained is made with the existing ones as well as the exact solutions. The results reveal the reliability and efficiency of the method in solving systems of NDDEs and can also be used in various types of linear and nonlinear problems.
文摘In this paper, we study the oscillatory and asymptotic behavior of second order neutral delay difference equation with “maxima” of the form? Examples are given to illustrate the main result.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses a linear neutral stochastic differential equation with variable delays. By using fixed point theory, the necessary and sufficient conditions are given to ensure that the trivial solution to such an equation is pth moment asymptotically stable. These conditions do not require the boundedness of delays, nor derivation of delays. An example was also given for illustration.
文摘Oscillation criteria are established for third-order neutral delay differential equations with deviating arguments. These criteria extend and generalize those results in the literature. Moreover, some illustrating examples are also provided to show the importance of our results.
文摘We consider a system of neutral equations with unbounded delay, and derive conditions on Liapunov functionals to ensure that the solutions are uniformly bounded and uniformly ultimately bounded.
文摘The objective of this paper is to develop monotone techniques for obtaining extremal solutions of initial value problem for nonlinear neutral delay differential equations.
文摘Aim To obtain new criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations. Methods By means of Hlder inequality and a method of direct analysis, some interesting Lemmas were offered. Results and Conclusion New criteria for asymptotic behavior and nonexistence of positive solutions of nonlinear neutral delay difference equations are established, which extend and improve the results obtained in the literature. Some interesting examples illustrating the importance of our results are also included.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
基金supported by Ministry of Human Resource and Development(MHR-02-23-200-429/304)
文摘This paper has two sections which deals with a second order stochastic neutral partial differential equation with state dependent delay. In the first section the existence and uniqueness of mild solution is obtained by use of measure of non-compactness. In the second section the conditions for approximate controllability are investigated for the distributed second order neutral stochastic differential system with respect to the approximate controllability of the corresponding linear system in a Hilbert space. Our method is an extension of co-author N. Sukavanam’s novel approach in [22]. Thereby, we remove the need to assume the invertibility of a controllability operator used by authors in [5], which fails to exist in infinite dimensional spaces if the associated semigroup is compact. Our approach also removes the need to check the invertibility of the controllability Gramian operator and associated limit condition used by the authors in [20], which are practically difficult to verify and apply. An example is provided to illustrate the presented theory.
文摘Some new sufficient conditions for the oscillation of the neutral equationddt[y(t)-R(t)y(t-r)]+P(t)y(t-τ)- Q(t)y(t-σ)=0, where P,Q,R∈C([t0,∞),R+) and r,τ,σ∈(0,∞),are obtained for the case where former results can not be applied in this paper.