In this paper,the author investigates uuiform stability,asymptotic stability,and uniform asymptotic stability forthe zero solution of neutral functional differentialequations.Some well-known results are improved.
A series of eontractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained, which provide unified theoretical foundatio...A series of eontractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained, which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs), neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.展开更多
In the phase space (Ch,│·│h), by using the Liapunov functional approach, sufficient and necessary criteria for the uniform stability and uniformly asymptotic stability of solutions to neutral.functional diffe...In the phase space (Ch,│·│h), by using the Liapunov functional approach, sufficient and necessary criteria for the uniform stability and uniformly asymptotic stability of solutions to neutral.functional differential equations with infinite delay are established. We also prove that the uniformly asymptotic stability of the solutions implies the existence of the bounded ones.展开更多
For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if perio...For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.展开更多
This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable....This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.展开更多
This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several differen...This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.展开更多
In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given...In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well know...Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well known results.展开更多
In this paper, the Razumikhin approach is applied to the study of both p-th moment and almost sure stability on a general decay for a class of impulsive stochastic functional differential systems with Markovian switch...In this paper, the Razumikhin approach is applied to the study of both p-th moment and almost sure stability on a general decay for a class of impulsive stochastic functional differential systems with Markovian switching. Based on the Lyapunov-Razumikhin methods, some sufficient conditions are derived to check the stability of impulsive stochastic functional differential systems with Markovian switching. One numerical example is provided to demonstrate the effectiveness of the results.展开更多
The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, s...The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, sufficient conditions for the stability of the zero solution of this equation are established.展开更多
The authors obtain some sufficient conditions for the stability of zero solutions to some types of the functional equation. (x)(t)+ p(t)-x(t)+q(t)x(t)+f (t, xt)=0 by transformations and the Liapunov's Second metho...The authors obtain some sufficient conditions for the stability of zero solutions to some types of the functional equation. (x)(t)+ p(t)-x(t)+q(t)x(t)+f (t, xt)=0 by transformations and the Liapunov's Second method. The obtained conclusions generalize some results of Stability of Equation (x)(t)+p(t)(x)(t)+q(t)x(t)=0 and Jack Hale in his paper of Theory of Functional Differential Equations.展开更多
The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equa...The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.展开更多
The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic deriva...The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.展开更多
This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations wi...This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations with delay. A new kind of φ-function is introduced to address the stability, which is more general than the exponential stability and polynomial stability. Using a specific Lyapunov function, a stability criteria for the neutral stochastic differential equations with multiple variable delays is established, by which it is relatively easy to verify the stability of such equations. Finally, the proposed theories are illustrated by two examples.展开更多
The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbanc...The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbance,the solution for the system is discontinuous.By using the Razumikhin technique and stochastic analysis approaches,as well as combining the idea of mathematical induction and classification discussion,some sufficient conditions for the pth moment exponential stability and almost exponential stability of the systems are obtained.The stability conclusion is full time-delay.The results show that impulse,the point distance of impulse and Markovain switching affect the stability for the system.Finally,two examples are provided to illustrate the effectiveness of the results proposed.展开更多
Based on the inherence theorem to the operator D(t) in [9], we investigate the stability with respect to the hull and the existence on almost periodic solutions for neutral functional differential equations (NFDE). Fo...Based on the inherence theorem to the operator D(t) in [9], we investigate the stability with respect to the hull and the existence on almost periodic solutions for neutral functional differential equations (NFDE). For periodic Eq. (1), we prove that if Eq. (1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to H.f(ξ),then Eq. (1 ) has an mω -- periodic solution p(t), for some integer m ≥1. Furthermore, we prove that if almost periodic Eq. (1 ) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq. (1) has an almost periodic solution.展开更多
In this article, criteria of eventual stability are established for impulsive differential systems using piecewise continuous Lyapunov functions. The sufficient conditions that are obtained significantly depend on the...In this article, criteria of eventual stability are established for impulsive differential systems using piecewise continuous Lyapunov functions. The sufficient conditions that are obtained significantly depend on the moments of impulses. An example is discussed to illustrate the theorem.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the eq...In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.展开更多
基金Supported by the National Natural Science Foundation of China (No. 11001033)Natural Science Foundation of Hunan Province (No. 10JJ4003)+3 种基金the Open Fund Project of Key Research Institute of Philosophies and Social Sciences in Hunan Universitiesthe Major Foundation of Educational Committee of Hunan Province(No. 09A002 [2009])the Scientific Innovation Foundation for the Electric Power Youth of Chinese Society for Electrical Engineeringthe Science and Technology Planning Project of Hunan Province (No. 2010SK3026)
文摘A series of eontractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained, which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs), neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.
基金Supported by the National Natural Sciences Foundation of China (No.10171010)the Key Project on Science and Technology of the Education Ministry of China (No.Key 01061).
文摘In the phase space (Ch,│·│h), by using the Liapunov functional approach, sufficient and necessary criteria for the uniform stability and uniformly asymptotic stability of solutions to neutral.functional differential equations with infinite delay are established. We also prove that the uniformly asymptotic stability of the solutions implies the existence of the bounded ones.
文摘For the operator D(t), we prove the inherence theorem, Theorem 2. Basing on it, we study the stability with respect to the hull for neutral functional differential equations with infinite delay. We prove that if periodic Eq.(1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to then Eq.(1) has an mω-periodic solution p(t), for some integer m≥1. Furthermore, we prove that if the almost periodic Eq.(1) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq.(1) has an almost periodic solution.
基金National Natural Science Foundation ofChina( No.1983 10 3 0 )
文摘This paper obtained some theorems that can ascertain the zero solution of functional differential equations are extremely uniformly stable, extremely asymptotically stable or extremely uniformly asymptotically stable. In the obtained theorems, the derivative of Liapunov function on t along the solutions of functional differential equations is not required to be always negative, especially, it may be even positive.
基金Supported by NSFC (11001091)Chinese UniversityResearch Foundation (2010MS129)
文摘This paper establishes the Razumikhin-type theorem on stability for neutral stochastic functional differential equations with unbounded delay. To overcome difficulties from unbounded delay, we develop several different techniques to investigate stability. To show our idea clearly, we examine neutral stochastic delay differential equations with unbounded delay and linear neutral stochastic Volterra unbounded-delay-integro-differential equations.
基金supported by the National Natural Science Foundation of China (No. 10871063)Scientific Research Fund of Hunan Provincial Education Department (No. 07A038)
文摘In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.
基金Sponsored by HUST Foundation(0125011017)the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
基金The project is supported by Natural Science Foundation of Hebei Provice.
文摘Using a Razumikhin-type theorem,we obtain sufficient conditions for the global asymptotic stability of the zero solution of a certain fourth order functional differential equations.The result generalizes the well known results.
文摘In this paper, the Razumikhin approach is applied to the study of both p-th moment and almost sure stability on a general decay for a class of impulsive stochastic functional differential systems with Markovian switching. Based on the Lyapunov-Razumikhin methods, some sufficient conditions are derived to check the stability of impulsive stochastic functional differential systems with Markovian switching. One numerical example is provided to demonstrate the effectiveness of the results.
文摘The main purpose of this paper is to investigate global asymptotic stability of the zero solution of the fifth-order nonlinear delay differential equation on the following form By constructing a Lyapunov functional, sufficient conditions for the stability of the zero solution of this equation are established.
文摘The authors obtain some sufficient conditions for the stability of zero solutions to some types of the functional equation. (x)(t)+ p(t)-x(t)+q(t)x(t)+f (t, xt)=0 by transformations and the Liapunov's Second method. The obtained conclusions generalize some results of Stability of Equation (x)(t)+p(t)(x)(t)+q(t)x(t)=0 and Jack Hale in his paper of Theory of Functional Differential Equations.
基金Sponsored by HUST Foundation(0125011017) the National NSFC under grant(70671047)
文摘The stability of stochastic functional differential equation with Markovian switching was studied by several authors,but there was almost no work on the stability of the neutral stochastic functional differential equations with Markovian switching.The aim of this article is to close this gap.The authors establish Razumikhin-type theorem of the neutral stochastic functional differential equations with Markovian switching,and those without Markovian switching.
基金supported by the National Natural Science Foundation of China(61273126)the Natural Science Foundation of Guangdong Province(10251064101000008+1 种基金S201210009675)the Fundamental Research Funds for the Central Universities(2012ZM0059)
文摘The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method.
基金The National Natural Science Foundation of China (No.10671078)
文摘This paper discusses the pth moment stability of neutral stochastic differential equations with multiple variable delays. The equation has a much more general form than the neutral stochastic differential equations with delay. A new kind of φ-function is introduced to address the stability, which is more general than the exponential stability and polynomial stability. Using a specific Lyapunov function, a stability criteria for the neutral stochastic differential equations with multiple variable delays is established, by which it is relatively easy to verify the stability of such equations. Finally, the proposed theories are illustrated by two examples.
基金This research was supported by the National Nature Science Foundation of China under Grant No.11571245Young Crop Project of Sichuan University under Grant No.2020SCUNL111.
文摘The aim of this paper is to the discussion of the exponential stability of a class of impulsive neutral stochastic functional differential equations with Markovian switching.Under the influence of impulsive disturbance,the solution for the system is discontinuous.By using the Razumikhin technique and stochastic analysis approaches,as well as combining the idea of mathematical induction and classification discussion,some sufficient conditions for the pth moment exponential stability and almost exponential stability of the systems are obtained.The stability conclusion is full time-delay.The results show that impulse,the point distance of impulse and Markovain switching affect the stability for the system.Finally,two examples are provided to illustrate the effectiveness of the results proposed.
文摘Based on the inherence theorem to the operator D(t) in [9], we investigate the stability with respect to the hull and the existence on almost periodic solutions for neutral functional differential equations (NFDE). For periodic Eq. (1), we prove that if Eq. (1) possesses the solution ξ(t) that is uniformly asymptotically stable with respect to H.f(ξ),then Eq. (1 ) has an mω -- periodic solution p(t), for some integer m ≥1. Furthermore, we prove that if almost periodic Eq. (1 ) possesses the solution ξ(t) that is stable under disturbance from H+ (ξ,D,f), then Eq. (1) has an almost periodic solution.
基金This work is supported by the National Natural Science Foundation of China (60474008)
文摘In this article, criteria of eventual stability are established for impulsive differential systems using piecewise continuous Lyapunov functions. The sufficient conditions that are obtained significantly depend on the moments of impulses. An example is discussed to illustrate the theorem.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
文摘In this paper, we study certain non-autonomous third order delay differential equations with continuous deviating argument and established sufficient conditions for the stability and boundedness of solutions of the equations. The conditions stated complement previously known results. Example is also given to illustrate the correctness and significance of the result obtained.