Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
Constrained by the characteristics of neutral sec- tions (NS) and traditional vacuum circuit breakers, previous phase-controlled strategies have a long power supply dead time, it is difficult to realize a continuous p...Constrained by the characteristics of neutral sec- tions (NS) and traditional vacuum circuit breakers, previous phase-controlled strategies have a long power supply dead time, it is difficult to realize a continuous power supply to the auxiliary power system. The dead time can be reduced by using the ground automatic convert method, hybrid phase-controlled technologies can in theory completely eliminate inrush currents. In this paper, a new system based on hybrid phase-controlled switches is described and termed ground-switching passing neutral section system (GPNSS). The principle for restraining inrush currents is analyzed and strategies are carried out with the dead time limited to 5 ms. The characteristics of the vacuum circuit breaker are illustrated and the closing time window of the transformer is quantified. Through the use of mechanical switches and power electronics, the auxiliary power system may be continuously pow- ered. The prototype system is implemented and experimentally tested in the laboratory.展开更多
For the further analysis and suppression of the electric locomotives neutral-section passing overvoltage, on the basis of theoretical analysis of the neutral-section passing harmonic resonance conditions, this paper e...For the further analysis and suppression of the electric locomotives neutral-section passing overvoltage, on the basis of theoretical analysis of the neutral-section passing harmonic resonance conditions, this paper establishes simplified harmonic resonance simulation models of the electric locomotives neutral-section passing using MATLAB/Simulink, and makes the overvoltage simulation analysis of the existing electric locomotives neutral-section passing system in the event of a harmonic resonance. Results show that when the system harmonic resonance occurs, the operating overvoltage of the neutral-section passing is serious intensified by the overvoltage of the harmonic resonance, which will make the voltage of the pantograph collector head exceeding 100kV. This amplitude of the overvoltage will breakdown the air gap, which will be a serious threat to the safety operation of the electric railway. However, this kind of neutral-section passing overvoltage hasn’t cause the attention in the field and theoretical studies, which need more analysis and verification in the further study.展开更多
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘Constrained by the characteristics of neutral sec- tions (NS) and traditional vacuum circuit breakers, previous phase-controlled strategies have a long power supply dead time, it is difficult to realize a continuous power supply to the auxiliary power system. The dead time can be reduced by using the ground automatic convert method, hybrid phase-controlled technologies can in theory completely eliminate inrush currents. In this paper, a new system based on hybrid phase-controlled switches is described and termed ground-switching passing neutral section system (GPNSS). The principle for restraining inrush currents is analyzed and strategies are carried out with the dead time limited to 5 ms. The characteristics of the vacuum circuit breaker are illustrated and the closing time window of the transformer is quantified. Through the use of mechanical switches and power electronics, the auxiliary power system may be continuously pow- ered. The prototype system is implemented and experimentally tested in the laboratory.
文摘For the further analysis and suppression of the electric locomotives neutral-section passing overvoltage, on the basis of theoretical analysis of the neutral-section passing harmonic resonance conditions, this paper establishes simplified harmonic resonance simulation models of the electric locomotives neutral-section passing using MATLAB/Simulink, and makes the overvoltage simulation analysis of the existing electric locomotives neutral-section passing system in the event of a harmonic resonance. Results show that when the system harmonic resonance occurs, the operating overvoltage of the neutral-section passing is serious intensified by the overvoltage of the harmonic resonance, which will make the voltage of the pantograph collector head exceeding 100kV. This amplitude of the overvoltage will breakdown the air gap, which will be a serious threat to the safety operation of the electric railway. However, this kind of neutral-section passing overvoltage hasn’t cause the attention in the field and theoretical studies, which need more analysis and verification in the further study.